1-2. Prove that the language

\[L = \{ d^{n+2}e^{n+1}f^n \} = \{ dde, dddeef, ddddeeff, \ldots \} \]

is not context-free.

Solution: Proof by contradiction. Let us assume that this language is context-free. Then, by the pumping lemma for context-free grammars, there exists an integer \(p \) such that every word \(w \) from this language whose length is at least \(p \) can be represented as \(w = uvxyz \), where \(\text{len}(vy) > 0 \), \(\text{len}(vxy) \leq p \), and for every \(i \), we have \(uv^i xy^i z \in L \).

Let us take the word \(w = d^{p+2}e^{p+1}f^p \in L \), in which first we have \(d \) repeated \(p + 2 \) times, then \(e \) repeated \(p + 1 \) times, and then \(f \) repeated \(p \) times. The length of this word is \((p + 2) + (p + 1) + p = 3p + 3 > p \), so this word can be represented as \(w = uvx \).

Where is \(vxy \)? Since the length of this part does not exceed \(p \), this word cannot contain \(d \)'s, \(e \)'s, and \(f \)'s – otherwise, it will have to contain all the symbols \(e \) between \(d \)'s and \(f \)'s, and there are more than \(p \) of these symbols. So, we have the following possible cases:

- \(vxy \) is in \(d \)'s;
- \(vxy \) is between \(d \)'s and \(e \)'s;
- \(vxy \) is in \(e \)'s;
- \(vxy \) is between \(e \)'s and \(f \)'s; or
- \(vxy \) is in \(f \)'s.

In the first case, \(v \) and \(y \) contain only \(d \)'s. So, when we go from \(uvx \) to \(uuvxyzz \), we add \(d \)'s, but we do not add \(e \)'s and \(f \)'s; thus, the desired balance between numbers of \(d \)'s, \(e \)'s, and \(f \)'s is disrupted, and so \(uvxxyz \notin L \) – while by pumping lemma, we should have \(uvxxyz \in L \). Thus, this case is impossible.

In the second case, \(v \) and \(y \) contain only \(d \)'s an \(e \)'s. So, when we go from \(uvx \) to \(uuvxyzz \), we add \(d \)'s and \(e \)'s, but we do not add any \(f \)'s; thus, the desired balance between numbers of \(d \)'s, \(e \)'s, and \(f \)'s is disrupted, and so
uvxyz \notin L \ - \text{ while by pumping lemma, we should have } uvxyz \in L. \text{ Thus, this case is impossible.}

Similarly, we can prove that the other three cases are also not possible. So, none of the cases is possible, which means that our assumption that the language \(L \) is regular is wrong.
3. Trace the following Turing machine on the example of the word 01:

- start, – → work, R (here, – means blank)
- work, 0 → 1, R
- work, 1 → 0, R
- work, – → back, L
- back, 0 → L
- back, 1 → L
- back, – → halt

Explain how each step will be represented if we interpret the Turing machine as a finite automaton with two stacks.

Solution:

Moment 1:

```
   _____
<p>| 0   |</p>
<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>start</td>
</tr>
</tbody>
</table>
   _____
```

Here the left stack is empty, and the right stack has the following form:

```
   _____
  | 0   |
  | 1   |
  |      |
``` 

Moment 2:

```
   _____
  | 0   |
  | 1   |
  |      |
  |      |
  | work |
   _____
```

Here, the stacks have the following form:

```
   _____
  | 0   |
  | 1   |
  |      |
``` 

Moment 3:

```
   _____
  | 1   |
  | 1   |
  |      |
  |      |
  |      |
  |      |
  | work |
   _____
```

Here, the stacks have the following form:

```
   _____
  | 1   |
  | 1   |
  |      |
``` 

Moment 4:

```
   _____
  | 1   |
  | 0   |
  |      |
  |      |
  |      |
  |      |
  | work |
   _____
```

3
Here, the stacks have the following form:

\[\begin{array}{c}
0 \\
1 \\
- \\
\end{array}\]

Moment 5:

\[\begin{array}{c}
- \\
1 \ 0 \\
- \\
\ldots \\
\end{array}\] back

Here, the stacks have the following form:

\[\begin{array}{c}
1 \\
0 \\
- \\
- \\
\end{array}\]

Moment 6:

\[\begin{array}{c}
- \\
1 \ 0 \\
- \\
\ldots \\
\end{array}\] back

Here, the stacks have the following form:

\[\begin{array}{c}
- \\
1 \\
0 \\
- \\
\end{array}\]

Moment 7:

\[\begin{array}{c}
- \\
1 \ 0 \\
- \\
\ldots \\
\end{array}\] back

Here, the left stack is empty, and the right stack has the following form:

\[\begin{array}{c}
- \\
1 \\
0 \\
- \\
\end{array}\]

Moment 8:

\[\begin{array}{c}
- \\
1 \ 0 \\
- \\
\ldots \\
\end{array}\] halt

Here, the stacks do not change.
4. Design a Turing machine that subtracts 100 (binary version of 4) from a binary number which is larger than or equal to 100. Trace your Turing machine, step-by-step, on the example of the string 1001. Why in Turing machines (and in most actual computers) the representation of a binary number starts with the least significant digit?

Solution: The idea is to skip the first two bits and then perform the usual operation of subtracting 1 in binary code. Here are the rules:

- start, – → skip1, R
- skip1, 1 → skip2, R
- skip1, 0 → skip2, R
- skip2, 1 → work, R
- skip2, 0 → work, R
- work, 1 → 0, back
- work, 0 → 1, R
- back, 0 → L
- back, 1 → L
- back, – → halt.

Here is the tracing:

```
- 1 0 0 1 ...
    start

- 1 0 0 1 ...
    skip1

- 1 0 0 1 ...
    skip2

- 1 0 1 ...
    work

- 1 0 1 1 ...
    work

- 1 0 1 0 ...
    back

- 1 0 1 0 ...
    halt
```
In most actual computers, the representation of a number starts with the least significant digit, since all arithmetic operations like addition, subtraction, or multiplication start with the least significant digit. So, if we store the number the way we write numbers, most significant digits first, computers will have to waste time going through all the digits until they come up with the least significant digit and start the actual computations. To speed up computations, representations therefore start with the least significant digits.

The same representation is used for Turing machines, to make them closer to how actual computers work and thus, make them more realistic.
5. The following finite automaton describes strings with at most one zero. This automaton has:

- the starting state s which is also final; this state means that we have not read any zeros yet;
- the state s_1 meaning that we have read one zero; this state is also final; and
- the state s_2 meaning that we have read two or more zeros.

Transitions are as follows:

- from the state s, symbol 0 leads to state s_1 and symbol 1 leads back to state s;
- from state s_1, symbol 1 leads back to state s_1 and 0 leads to state s_2;
- from state s_2, both symbols 0 and 1 lead back to the state s_2.

Use the general algorithm to transform this finite automaton into a Turing machine. Show, step-by-step, how your Turing machine will accept the string 101.

Solution: This Turing machine will have the following rules:

- start, – → s, R
- s, 1 → s, R
- s, 0 → s_1, R
- s_1, 1 → s_1, R
- s_1, 0 → s_2, R
- s_2, 0 → s_2, R
- s_2, 1 → s_2, R
- s, – → accept
- s_1, – → accept
- s_2, – → reject

Tracing:

\[
\begin{array}{ccccccc}
- & 1 & 0 & 1 & - & \ldots \\
\end{array}
\]

start

\[
\begin{array}{ccccccc}
- & 1 & 0 & 1 & - & \ldots \\
\end{array}
\]

s
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th></th>
<th>...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

s

s_1

s_1

s_1

accept
6. Give the formal definition of a feasible algorithm. Give two examples different from what we had in class:

- an example of a computation time which is formally feasible, but not practically feasible, and
- an example of a computation time which is practically feasible but not formally feasible.

Solution: An algorithm A is called feasible if its running time $t_A(x)$ on each input x is bounded by some polynomial $P(len(x))$ of the length $len(x)$ of the input: $t_A(x) \leq P(len(x))$. In other words, the algorithm is feasible if for each length n, the worst-case complexity $t^w_A(n) = \max\{t_A(x) : len(x) = n\}$ is bounded by a polynomial: $t^w_A(n) \leq P(n)$.

Time complexity $t^w_A(n) = 10^{200}$ is a constant – thus a polynomial, so from the viewpoint of the formal definition, it is feasible. However, this number is larger than the number of particles in the Universe, so it is clearly not practically feasible.

On the other hand, the function $\exp(10^{-21} \cdot n)$ is an exponential function and thus, grows faster than an polynomial, but even for largest realistic lengths n – e.g., for $n = 10^{18}$ – the resulting value is smaller than 3 and is, thus, perfectly practically feasible.
7. What is P? What is NP? What does it means for a problem to be NP-hard? NP-complete? Give brief definitions. Give an example of an NP-complete problem: explain what is the input, what is the desired output. Is P equal to NP?

Solution: P is the class of all the problems that can be solved in polynomial time.

NP is the class of all the problems for which, once we have a candidate for a solution, we can check, in polynomial time, whether it is indeed a solution.

A problem is called NP-hard if every problem from the class NP can be reduced to this problem.

A problem is called NP-complete if it is NP-hard and itself belongs to the class NP.

An example of an NP-complete problem is propositional satisfiability:

- given: a propositional formula, i.e., any expression obtained from Boolean variables by using “and”, “or”, and “not”,
- find: the values of the Boolean variables that makes this formula true.

At present, no one knows whether P is equal to NP. Most computer scientists believe that these two classes are different.
8. Prove that the cubic root of 3 is not a rational number.

Solution: Let us prove this by contradiction. Let us assume that \(\sqrt[3]{3} \) is a rational number, i.e., that \(\sqrt[3]{3} = a/b \) for some natural numbers \(a \) and \(b \). Without losing generality, we can assume that \(a \) and \(b \) have no common factors – if they had, we could divide both numerator and denominator by this common factor.

Raising both sides of this equality to the 3rd power, we get \(3 = a^3/b^3 \). Multiplying both sides by \(b^3 \), we get \(a^3 = 3b^3 \). The right-hand side of this equality divides by 3, so the left-hand side \(a \cdot a \cdot a \) must be divisible by 3 as well. This means that one of the factors in the left-hand side product must be divisible by 3, i.e., that \(a \) is divisible by 3. This means that \(a = 3p \) for some natural number \(p \). Substituting \(a = 3p \) into the equality \(a^3 = 3b^3 \), we conclude that \(27p^3 = 3b^3 \) i.e., dividing both sides by 3, that \(9p^3 = b^3 \).

Now, the left-hand side is divisible by 3, so similarly to the above argument we can conclude that \(b \) is also divisible by 3. Thus \(a \) and \(b \) have a common factor 3 – but \(a \) and \(b \) have no common factors. This contradiction proves that our assumption is wrong, and so \(\sqrt[3]{3} \) is not a rational number.
9. Formulate the halting problem. Prove that it is not possible to check whether a given program halts on given data.

Solution: The halting problem is the problem of checking whether a given program p halts on given data d. We can prove that it is not possible to have an algorithm `haltChecker(p,d)` that always solves this program by contradiction. Indeed, suppose that such an algorithm – i.e., such a Java program – exists. Then, we can build the following auxiliary Java program:

```java
public static int aux(String x)
{if(haltChecker(x,x))
  (while(true) x= x;)
else{return 0;}}
```

If `aux` halts on `aux`, then `haltChecker(aux,aux)` is true, so the program `aux` goes into an infinite loop – and never halts. On the other hand, if `aux` does not halt on `aux`, then `haltChecker(aux,aux)` is false, so the program `aux` returns 0 – and thus, halts. In both cases, we get a contradiction, which proves that `haltChecker` is not possible.
10. Formulate Church-Turing thesis. Is it a mathematical theorem? Is it a statement about the physical world?

Solution: Church-Turing thesis states that any function that can be computed on any physical device can also be computed by a Turing machine (or, equivalently, by a Java program).

Whether this statement is true or not depends on the properties of the physical world. Thus, this statement is not a mathematical theorem, it is a statement about the physical world.