Solution to Problem 10

Task: Transform the grammar consisting of two rules

\[S \to \varepsilon; \quad S \to cSd \]

into Chomsky normal form.

Solution.

Preliminary step. First, we introduce a new starting variable \(S_0 \) and a rule \(S_0 \to S \), where \(S \) is the starting variable of the original grammar. So, the grammar takes the following form:

\[S \to \varepsilon; \quad S \to cSd; \quad S_0 \to S. \]

Step 0. We eliminate non-Chomsky rules with right-hand side of length 0, i.e., with right-hand side an empty string and the left-hand side is not a starting variable. In the above grammar, there is one such rule: \(S \to \varepsilon \). To eliminate this rule, for each rule that has \(S \) in the right-hand side, we add another rule in which this symbol \(S \) is deleted.

In the above grammar, there are two rules: \(S \to cSd \) and \(S_0 \to S \).

- For the rule \(S \to cSd \), if we delete the letter \(S \) from the right-hand side, we get the rule \(S \to cd \) that we add to our grammar.
- For the rule \(S_0 \to S \), if we delete the letter \(S \) from the right-hand side, we get the rule \(S_0 \to \varepsilon \) that we add to our grammar.

After we delete the rule \(S \to \varepsilon \) and add the new rules \(S \to cd \) and \(S_0 \to \varepsilon \), we get the following grammar:

\[S \to cSd; \quad S_0 \to S; \quad S \to cd; \quad S_0 \to \varepsilon. \]

Step 1. On this step, we eliminate non-Chomsky rules in which the right-hand side has length 1, i.e., in which the right-hand side is a variable. In the above grammar, there is only one such rule: \(S_0 \to S \). To eliminate this rule, for each rule \(S \to w \) that has the variable \(S \) is the left-hand side (for any right-hand side \(w \)), we add a rule \(S_0 \to w \).
In the current grammar, we have two rules with S in the left-hand side: $S \rightarrow cSd$ and $S \rightarrow cd$. So, once we eliminate the rule $S_0 \rightarrow S$, we have to add rules $S_0 \rightarrow cSd$ and $S_0 \rightarrow cd$. As a result, we get the following grammar:

$$S \rightarrow cSd; \quad S \rightarrow cd; \quad S_0 \rightarrow \varepsilon; \quad S_0 \rightarrow cSd; \quad S_0 \rightarrow cd.$$

Step 2. On this step:

- For each terminal symbol a, we introduce an auxiliary variable V_a and a rule $V_a \rightarrow a$.
- Then, in each rule in which the right-hand side has 2 or more symbols and at least one of them is a terminal symbol, we replace each terminal symbol with the corresponding variable.

In our grammar, we have two terminal symbols c and d. So, we introduce two new variables V_c and V_d and two new rules $V_c \rightarrow c$ and $V_d \rightarrow d$.

In the rule $S \rightarrow cSd$, we replace c with V_c and d with V_d, and get the new rule $S \rightarrow V_cSV_d$. We do the same replacement with all other rules in which the right-hand side has 2 or more symbols and at least one of them is a terminal symbol. As a result, we get the following grammar:

$$S \rightarrow V_cSV_d; \quad S \rightarrow V_cV_d; \quad S_0 \rightarrow \varepsilon; \quad S_0 \rightarrow V_cSV_d; \quad S_0 \rightarrow V_cV_d; \quad V_c \rightarrow c; \quad V_d \rightarrow d.$$

Step 3. At this step, we replace each rule of the type $V \rightarrow ABC$ with two rules: $V_{AB} \rightarrow AB$ for a new variable V_{AB} and $V \rightarrow V_{ABC}$. According to this algorithm, the rule $S \rightarrow V_cSV_d$ is replaced by two rules: $V_cS \rightarrow V_cS$ and $S \rightarrow V_cSV_d$. After we perform the same replacement for all other rules that have three or more symbols in the right-hand side, we get the following grammar:

$$V_cS \rightarrow V_cS; \quad S \rightarrow V_cSV_d; \quad S \rightarrow V_cV_d; \quad S_0 \rightarrow \varepsilon; \quad S_0 \rightarrow V_cSV_d; \quad S_0 \rightarrow V_cV_d; \quad V_c \rightarrow c; \quad V_d \rightarrow d.$$

This grammar is already in Chomsky normal form, i.e., it only has three types of rules:

- rules of the type $S_0 \rightarrow \varepsilon$, where S_0 is the starting variable;
- rules of the type $V \rightarrow a$, where V is a variable and a is a terminal symbol; and
- rules of the type $V \rightarrow AB$, where V, A, and B are variables.