Solution to Homework Problem 18

Homework Problem 18. Use the general algorithm to transform a finite automaton from Problem 3 into a Turing machine. Show step-by-step, on an example of a word 101, how this word will be recognized by your Turing machine.

Automaton from Problem 3: reminder. This automaton has two states:
\(x \) and \(y \), \(x \) is the starting state and \(y \) is the final state. The only two symbols are 0 and 1. From \(x \), 0 leads back to \(x \), and 1 leads to \(y \). From \(y \), 1 leads to \(y \), and 0 leads to \(x \).

Solution. Here are the rules for the Turing machine:

- start, \(-\) \(\rightarrow\) R, \(x\)
- \(x\), 1 \(\rightarrow\) R, \(y\)
- \(x\), 0 \(\rightarrow\) R, \(x\)
- \(y\), 1 \(\rightarrow\) R, \(y\)
- \(y\), 0 \(\rightarrow\) R, \(x\)
- \(y\), \(-\) \(\rightarrow\) accept
- \(x\), \(-\) \(\rightarrow\) reject

Tracing.

\[
\begin{array}{cccccc}
_ & 1 & 0 & 1 & \ldots \\
_ & 1 & 0 & 1 & \ldots \\
_ & 1 & 0 & 1 & \ldots \\
_ & 1 & 0 & 1 & \ldots \\
_ & 1 & 0 & 1 & \ldots \\
_ & 1 & 0 & 1 & \ldots \\
\end{array}
\]

- start
- \(x\)
- \(y\)
- \(x\)
- \(y\)
- accept