Solution to Homework 1

Task 1: general description. In class, we designed automata for recognizing integers and real numbers.

Task 1.1. Use the same ideas to describe an automaton for recognizing names of Java constants. In Java, this name should start with a capital letter, and contain only capital letters, digits, or the underscore symbol. To describe an automaton, draw a picture like we do in class.

A natural idea is to have 3 states: start (s), correct constant name (v), and error (e). Start is the starting state, v is the only final state. The transitions are as follows:

- from s, any capital letter A, \ldots, Z lead to v, every other symbol leads to e;
- from v, any digit, any capital letter, and the underline symbol lead back to v, every other symbol leads to e;
- from e, every symbol leads back to e.

Solution. The desired automaton takes the following form:

![Diagram of automaton for recognizing Java constant names]
Task 1.2. Trace, step-by-step, how this finite automaton will check whether the following two words (sequences of symbols) are correct are correct names for Java constants:

- the word \(PI \) (which this automaton should accept) and
- the word \(Pi_2 \) (which this automaton should reject).

Solution. Let us trace how this automaton will accept the word \(PI \). We are originally in the state \(s \):

Then, we read the first letter \(P \) of the word \(PI \), so we move to state \(v \):

Then, we read the second letter \(I \) of the word \(PI \), and we stay in the state \(v \):
The word is read, we are in the final state, so the word PI is accepted.
Let us now trace how the automaton will react to the word Pi_2. We also start in the start state s:

Then, we read the symbol P of the word Pi_2, so we move to the state v:

After that, we read the symbol i in the word Pi_2 and move to state e:

3
Then, we read the underscore symbol and stay in the state e:

Finally, we read the last symbol 2 of the word $P_i.2$ and stay in the state e:

We have read all the symbols, we are in the state e which is not final, so the word $P_i.2$ is not accepted.
Task 1.3. Write down the tuple \((Q, \Sigma, \delta, q_0, F) \) corresponding to this automaton:

- \(Q \) is the set of all the states,
- \(\Sigma \) is the alphabet, i.e., the set of all the symbols that this automaton can encounter; for simplicity, consider only four symbols: digit 0, letters a and A, and an underscore;
- \(\delta : Q \times \Sigma \rightarrow Q \) is the function that describes, for each state \(q \) and for each symbol \(s \), the state \(\delta(q, s) \) to which the automaton that was originally in the state \(q \) moves when it sees the symbol \(s \) (you do not need to describe all possible transitions this way, just describe two of them);
- \(q_0 \) is the staring state, and
- \(F \) is the set of all final states.

Solution. \(Q = \{s, v, e\} \), \(\Sigma = \{0, a, A, _\} \), \(q_0 = s \), \(F = \{v\} \), and the transition function \(\delta \) is described by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>A</th>
<th>_</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>e</td>
<td>e</td>
<td>v</td>
<td>e</td>
</tr>
<tr>
<td>v</td>
<td>v</td>
<td>e</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>e</td>
</tr>
</tbody>
</table>
Task 1.4. Apply the general algorithm for union and intersection to:

- this automaton as Automaton A and
- a more realistic version of an automaton for recognizing unsigned integers – that automaton is described in the examples lecture – as Automaton B; in the example described in the lecture, we assumed, for simplicity, that, in addition to 0 and 1, only the symbol a is allowed; in reality, any other symbol different from 0 and 1 – including symbols A and underscore – leads to the error state e.

For simplicity, in your automaton for recognizing the union and intersection of the two languages, feel free to assume that you only have symbols 0, a, A, and underscore.

Solution. If we limit ourselves to these 4 symbols, then the Automaton A takes the form

![Automaton A](image)

The Automaton B has the following form:

![Automaton B](image)
Solution. In the beginning, before we see any symbols, both automata are in the state s, so the combined automaton is in the state (s, s). Then:

- if we read A, Automaton A goes into state v and automaton B goes into state e, so we go into the state (v, e);
- if we read 0, then A goes into e and B goes into i, so the combined automaton goes into (e, i);
- if we read a or ϵ, then both automata go into e states, so the combined automaton goes into (e, e).

We can similarly describe transitions from these three new states. As a result, we get the following automaton:

![Automaton Diagram](attachment:image.png)

Note that no state is final for both automata, so no state is final for the intersection.