Solution to Homework 9

Background. In Problem 7, we considered a grammar with rules

\[S \rightarrow \varepsilon \quad \text{and} \quad S \rightarrow cSd. \]

Tasks:

1. Use a general algorithm to construct a (non-deterministic) pushdown automaton that corresponds to context-free grammar described in Problem 7.

2. Show, step by step, how the word \(ccdd \) will be accepted by this automaton.

Solution to Task 1. By using the general algorithm, we get the following pushdown automaton:

![Pushdown Automaton Diagram](attachment:automaton.png)

Solution to Task 2. Let us show how this is done on the example of the word \(ccdd \) generated by the above automaton:

\[S \rightarrow cSd \rightarrow ccSdd \rightarrow ccdd. \]

To make this derivation clearer, let us mark the variable \(S \) corresponding to different transitions by subscripts:
• we start with the first occurrence S_1 of the variable S;
• we then use the rule $S_1 \rightarrow cS_2d$ whose right-hand side contains the second occurrence S_2 of the variable S;
• this occurrence, in its turn, gets transformed into $S_2 \rightarrow cS_3d$ for yet another occurrence S_3 of the same variable S; so far, the derivation takes the form
 \[S_1 \rightarrow cS_2d \rightarrow ccS_3dd; \]
• finally, to the occurrence S_3, we apply the rule $S_3 \rightarrow \varepsilon$, resulting in the desired derivation:
 \[S_1 \rightarrow cS_2d \rightarrow ccS_3dd \rightarrow ccdd. \]

Let us now trace what our pushdown automaton will do. We start in the state s with an empty stack:

The only thing we can do when in the state s is push the dollar sign into the stack and get to the intermediate state i:

![Diagram of the pushdown automaton]
The contents of the stack is as follows:

\[\$ \]

When we are in the state \(i \), the only thing we can do is push the starting variable \(S \) (which corresponds to the first occurrence \(S_1 \) of this variable) into the stack and go into the working state \(w \):

\[\varepsilon, \varepsilon \rightarrow S \]

Now, the stack contains the starting variable on top of the dollar sign:

\[S \]

\[\$ \]

Now that we are in the working state, we can start following the rules that were used to derive the word \(ccdd \). The first rule was \(S \rightarrow cSd \), or, to be precise, \(S_1 \rightarrow cS_2d \). As we have mentioned, this rule is implemented in three steps:
• first, we pop S (that corresponds to the first occurrence S_1) and push the last symbol of the right-hand side – in this cases, the letter d – into the stack, getting into the auxiliary state a_1;
• then, we push S (that corresponds to the second occurrence S_2) into the stack, getting into the auxiliary state a_2;
• finally, we push c into the stack, and go back to the working state w.

Let us illustrate this step by step.

First, we pop S, push d, and go into the state a_1:

The stack will now have d instead of S:

Then, we push S (corresponding to S_2) into the stack and go into the state a_2:

The stack will now have S on top of its previous contents:
Finally, we push c into the stack, and go back to the working state:

The stack will now have letter c at the top:

Now, the letter c is top of the stack. The only thing we can do if a terminal symbol is on top of the stack is use one of the rules of the type $x, x \rightarrow \varepsilon$ where x stands for the corresponding terminal symbol.

In our case:
- since the terminal symbol on top of the stack is the letter c,
- we need to use the rule $c, c \rightarrow \varepsilon$,

i.e., we read the letter c from the original word $ccdd$ and pop the top symbol c from the stack:
After this popping, the variable S (corresponding to S_2) will be on top of the stack:

$$
\begin{array}{c}
S \\
d \\
S
\end{array}
$$

According to the original derivation of the word $ccdd$, to get rid of the second occurrence S_2 of the variable S, we also use the rule $S \rightarrow cSd$, or, to be precise $S_2 \rightarrow cS_3d$. So, similarly to what we have before when we used this rule, first, we pop S, push d, and go to the state a_1:

Now, we have d instead of S on top of the stack:

$$
\begin{array}{c}
d \\
d \\
S
\end{array}
$$

After that, we push S (that corresponds to the third occurrence S_3) and go to state a_2:
The stack now has the form:

```
S
d
d
$  
```

Finally, we push c into the stack and go back to the working state w:

```
- ε, ε → S
- ε, ε → c
- ε, c → ε
- d, d → ε
```

Now, the stack has the following form:

```
c
S
d
d
$  
```

Now again, we have a terminal symbol c on top of the stack, so the only thing we can do is use the rule $c, c → ε$: we read the second letter c of the word $ccdd$ (the first one we have already read, so the cursor points to the second one) and pop c from the stack. As a result, we get the following state:

```
- ε, ε → S
- ε, ε → d
```

```
- ε, ε → c
- ε, c → ε
- d, d → ε
```

```
- ε, S → d
- ε, S → ε
```

```
- ε, ε → c
- ε, c → ε
- d, d → ε
```

```
- ε, S → ε
```

```
- ε, S → ε
```

```
- ε, ε → c
- ε, c → ε
- d, d → ε
```

```
- ε, S → ε
```

```
- ε, ε → S
- ε, S → ε
```

```
- ε, ε → S
- ε, S → ε
```

```
- ε, ε → S
- ε, S → ε
```
The stack has the following form:

\[S \]
\[d \]
\[d \]
\[$ \]

On top of the stack is the variable \(S \) corresponding to the third occurrence \(S_3 \). To get rid of this variable, in the original derivation of the sequence, we used the rule \(S \rightarrow \varepsilon \) – or, to be more precise, \(S_3 \rightarrow \varepsilon \). This rule of the grammar corresponds to the transition \(\varepsilon, S \rightarrow \varepsilon \) of the pushdown automaton, i.e., we pop \(S \) from the stack:

The stack now takes the following form:

\[d \]
\[d \]
\[$ \]

There is a terminal symbol on top of the stack – in this case, the symbol \(d \). We want an empty stack at the end. The only way to get rid of \(d \) is to use the rule \(d, d \rightarrow \varepsilon \), i.e., to read the next letter \(d \) from the word \(cccd \), and to pop \(d \) from the stack:
Now, the stack has the following form:

![Diagram]

Again, we have a terminal symbol d on top of the stack, so we again use the rule $d, d \rightarrow \varepsilon$, i.e., we read the next letter d of the word $ccdd$, and we pop d from the stack:

![Diagram]

Now, the stack only contains the dollar sign:

![Diagram]

We have read all the letters of the original word, and all we have in the stack is the dollar sign. So now, we can use the rule $\varepsilon, \$ \rightarrow \varepsilon$ to pop the dollar sign and to go to the final state:

![Diagram]
Now, we are in the final state f with the empty stack. This means that the word $ccdd$ is accepted by this pushdown automaton.

A graphical description of the transitions.

<table>
<thead>
<tr>
<th>read</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>s</td>
<td>i</td>
<td>w</td>
<td>a_1</td>
<td>a_2</td>
<td>w</td>
<td>$-$</td>
<td>w</td>
</tr>
</tbody>
</table>
| stack| S| d| d| S| d| d| d| S
| $-$| S| $-$| S| $-$| S| $-$| S| $-$|

<table>
<thead>
<tr>
<th>read</th>
<th>c</th>
<th>d</th>
<th>d</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>state</td>
<td>w</td>
<td>$-$</td>
<td>w</td>
<td>$-$</td>
</tr>
<tr>
<td>stack</td>
<td>S</td>
<td>S</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>$-$</td>
<td>d</td>
<td>d</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>$-$</td>
<td>S</td>
<td>$-$</td>
<td>S</td>
<td>$-$</td>
</tr>
</tbody>
</table>