Solution to Homework 8

Background: In Homework 3, we considered the following automaton. This automaton has two states: s (= straight-A student) and e (= everyone else); s is the starting state, it is also the final state. The only two symbols are A and B.

- From s, A leads to s, and B to e.
- From e, any symbol leads back to e.

This automaton has the following form:

![Automaton Diagram]

Tasks:

1. On the example of the automaton from Homework 3, show how the general algorithm will produce a context-free grammar that generates all the words accepted by this automaton – and only words generated by this automaton.

2. On the example of a word AAA accepted by this automaton, show how the tracing of acceptance of this word by the finite automaton can be translated into a generation of this same word by your context-free grammar.

Comment. In CFG, terminal symbols are small letters, so we will use a instead of A.

Solution to Task 1. The general algorithm for transforming FA into CFG is as follows:

- To each state q of the FA, introduce a new variable Q.
- The variable corresponding to the starting state will be the starting variable of the new CFG.
- For each transition of the finite automaton
we add a rule $Q \rightarrow aQ'$.

- For each final state f of the FA, we add a rule $F \rightarrow \varepsilon$.

By applying this general algorithm to this FA, we get a CFG with the starting variable S and the following rules:

$$
S \rightarrow aS \\
S \rightarrow bE \\
E \rightarrow aE \\
E \rightarrow bE \\
S \rightarrow \varepsilon
$$

Solution to Task 2. Derivations in this grammar follow, step-by-step, the way the original finite automaton accepts a word. The word AAA is accepted by the original finite automaton as follows:

- we start in the start state s; this corresponds to the starting variable S;
- then, we use the fact that once we are in the state s and we see the symbol A, then we move to the state s; this transition corresponds to the rule $S \rightarrow aS$, so the generation so far is:
 $$S \rightarrow aS$$
- we have read all the symbols of the word, and we are in the final state s; for the FA, this means that the word AAA is accepted; for CFG, we need to use the rule $S \rightarrow \varepsilon$ corresponding to the final state s; thus, we get the following derivation of the word AAA:
 $$S \rightarrow aS \rightarrow aaS \rightarrow aaaS \rightarrow aaaa.$$