1. Write the proof for Halting Problem.

Halting Problem Theorem:

There is no algorithm that will, given an arbitrary program p and input data d, check whether p halts on d or not.

PROOF By reduction to a contradiction.

Part 1 Let’s assume there exists such algorithm and call it “halt_checker”. The halt_checker algorithm correctly checks if a given program p halts on a given data d, returning $true$ if p halts on d, or returning $false$ if p does not halt on d.

In the computer, the program p is represented as a sequence of 0’s and 1’s. We can interpret this sequence as an integer. This integer will be called a code of program p.

For every integer c that is a code of a syntactically correct program, we will define the result of applying this program to an integer n by $f_c(n)$.

Part 2 Let’s define a function $f(n)$.

$$f(n) = \begin{cases}
 f_n(n) + 1 & \text{if } n \text{ is a code of a syntactically correct program} \\
 \text{and this program halts on } n, \text{ i.e.,} \\
 \text{halt_checker}(f_n, n) = true; \\
 0 & \text{otherwise.}
\end{cases} \quad (1)$$

Part 3 This function f is computable. Indeed, it can be computed as follows: first, we pass n as input to a Pascal compiler which checks whether the sequence of 0’s and 1’s that represents n is a syntactically correct code.

If the integer n does not represent a syntactically correct code, then, we return 0 as $f(n)$; otherwise, if n is a syntactically correct program, then we apply the halt_checker to this program n and to the same integer n serving as input data.

If $\text{halt_checker}(n, n) = false$, this means that the program f_n does not halt on the data n, so we return 0 as $f(n)$.

If $\text{halt_checker}(n, n) = true$, this means that the program f_n halts on n. In this case, we apply this program f_n to the input n, and then add 1 to the result $f_n(n)$ of this application.
Part 4 We have shown that the function \(f(n) \) is computable. Moreover, we can easily write this function \(f(n) \) as a Pascal program. Therefore, it has a code.

Let us denote this code by \(c \). By definition, the function \(f(n) \) always halts. The fact that \(c \) is a code of the function \(f \) means that for every \(n \), \(f(n) \) coincides with \(f_c(n) \), or \(f(n) = f_c(n) \).

Since it is true for all \(n \), it must be true for \(n = c \), so \(f(c) = f_c(c) \).

But by definition (1) of function \(f \), \(f(c) = f_c(c) + 1 \). Hence, \(f_c(c) = f_c(c) + 1 \), which is impossible. **Contradiction!**

Therefore our assumption that a *halt_checker* exists is false; there is no *halt_checker* algorithm that would check whether a given program \(p \) halts on a given data \(d \).

2. A *cube_checker* is an algorithm that checks whether a given program \(p \) always computes \(n^3 \). Formally: a *cube_checker* is an algorithm that, given a program \(p \) that always halts, returns *true* if for all \(n \), \(p(n) = n^3 \), and returns *false* if there exists an integer \(n \) such that \(p(n) \neq n^3 \).

Prove that the “*cube_checker*” is impossible.

PROOF By reduction to “*zero_checker*”.

Let’s assume that such *cube_checker* program exists.

Let us use this *cube_checker* to build a “*zero_checker*” program that receives a program \(q \) as input, and returns *true* if for all \(n \), \(q(n) = 0 \), or *false* if there exists \(n \) such that \(q(n) \neq 0 \).

Indeed, let us design the following algorithm \(U \): it receives a program \(q \) as input, constructs a new program \(p \) that computes \(q(n) + n^3 \) for all \(n \), and passes this program \(p \) as an input to the *cube_checker* program.

If *cube_checker* returns *true*, it means that for all \(n \), \(q(n) + n^3 = n^3 \), which implies that \(q(n) = 0 \) for all \(n \).

If the *cube_checker* returns *false*, it means that \(q(n) + n^3 \neq n^3 \) for some \(n \), which implies that \(q(n) \neq 0 \) for this \(n \).

Thus, the algorithm \(U \) returns *true* if and only if the given program \(q \) always returns 0. Thus, \(U \) is a *zero_checker*.

But it was already proved that a *zero_checker* is impossible; therefore a *cube_checker* is also impossible. □