Theory of computation.

week 2

m, n \in \mathbb{N}

\text{mult} = 0

\text{for } (i = 0; i < m; i++)
\quad \text{mult} = \text{mult} + n
\text{mul} + (m, m)
\begin{cases}
\text{mult} + (m, 0) = 0 \\
\text{mult} + (m, n+1) = \text{mult} + (n, m) + n
\end{cases}

\begin{cases}
\text{f}(n_1, n_k, 0) = g(n_1, \ldots, n_k) \\
\text{f}(n_1, n_k, m+1) = h(n_1, \ldots, n_k, m, f(n_1, n_k, m+1))
\end{cases}

k = 1

\begin{align*}
\text{f}(m, 0) &= g(m) \\
\text{f}(m, m+1) &= h(m, m, f(m, m))
\end{align*}

\begin{cases}
\text{f}(n_1, 0) = 0 \\
\text{f}(n_1, m+1) = \text{f}(n_1, m) + n_1
\end{cases}

\begin{align*}
g(n_1) &= 0 \\
h(n_1, m_1, f) &= f + m_1 = \frac{n_1^3}{m_1} + \frac{n_1^3}{m_1}
\end{align*}

\begin{align*}
\text{mult} &= \text{PR}((0, \text{add}(\frac{n_1^3}{m_1}, \frac{n_1^3}{m_1})))
\end{align*}

\text{square}

\begin{align*}
0^2 &= 0 \\
(m+1)^2 &= m^2 + 2m + 1
\end{align*}

\begin{align*}
\text{square}(0) &= 0 \\
\text{square}(m+1) &= \text{square}(m^2) + 2m + 1
\end{align*}
\[f(0) = 0 \quad g = 0 \]
\[f(m+1) = f(m) + m - m + 1 \]

\[n = \]

prove factorial is descriptive recursive
\[\text{fact}(n) = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n \]
\[f = 1; \]
\[\text{factorial}(n) \]
\[\text{for } (i=1; i \leq n; i++) \{
\]
\[\quad f(i) = f(i) \times i; \]
\[\quad \] \]
\[\}

1. Write java code -> loop // General Description
2.
3. Match with definition
\[f(m, k) : f(m, n, 0) = g(n, \ldots, n) \]
\[f(m, k) : f(m, n, m+1) = g(n, \ldots, n, m) \]

\[\square \text{ Before Thursday} \]

1) \(a^n \) is PR
2) \(n^2 + n^2 + 5 \) is PR
3) \(n^3 - n^2 + 5 \) is PR
4) exclusive OR is PR
Prove that
\[a - b = \begin{cases}
 a - b & \text{if } a > b \\
 0 & \text{if } a \leq b
\end{cases} \]

\[
\begin{align*}
\text{prev}(3) &= 2 \\
\text{prev}(2) &= 1 \\
\text{prev}(1) &= 0 \\
\text{prev}(0) &= 0
\end{align*}
\]

\[
\begin{align*}
\text{prev}(0) &= 0 \\
\text{prev}(m+1) &= 1 \\
&& \text{if } m + 1 \\
\end{align*}
\]

\[\text{prev}(0, \pi_2^2) \]

\[\forall \text{prev}(0, \pi_2^2) \Rightarrow a = 0 \]

\[a - b = \frac{((a - 1) - 1) - 1}{b \text{ times}} \]

\[+ \text{ minus } = a \]
\[\text{for } (i = 1; i < b; i++) \{
\]
\[\text{minus } = \text{ minus } - 1; \]
\[\}
\]

\[\text{minus}(0) = a \]
\[\text{minus}(a, m+1) = h(f(a, m)) \]

\[f(n, 0) = n \]
\[f(n_1, m+1) = 0 \text{ if prev}(f(n_1, m+1)) \]

\[h(n, m, f) \]

Prove
\[q = n = n^3 \]

Conditions: if then

\[\begin{cases} <, >, =, \leq, \geq \\ + \quad > 0 \quad \text{and not} \end{cases} \]

\[\text{true} = 1 \quad \text{pos}(0) = 0 - q \]
\[\text{false} = 0 \quad \text{pos}(m+1) = 1 - h \]

\[\Rightarrow \text{PR}(q, h) = \text{PR}(0, 1) \]

\[> 0 \quad \text{is PR} \]

\[+ \quad a \geq b \]
\[\Rightarrow a - b > 0 \quad a - b \equiv \text{PR}(\text{pos}(a-b)) \]
\[\begin{cases} \text{not}(0) = 1 \\ \text{not}(m+1) = 0 \end{cases} \]
\[a \leq b \quad \text{not} \quad \text{pos}(a \geq b) \]
\[\text{not} \quad \text{is PR} \]

\[\begin{aligned} n > 0 & \quad \text{is PR} \\ a \geq b & \equiv \text{pos}(a-b) \\ \text{not} & \quad \text{is PR} \\ a > b & \equiv \text{not} \quad (b > a) \end{aligned} \]

\[a = b \quad \Rightarrow \quad \text{not} \quad (a > b) \quad \text{and} \quad \text{not} \quad (a < b) \]
\[a \land b \quad \Rightarrow \quad \text{not} \quad (\text{not}(a \land \text{not} b)) \]
Three classes of basic functions:

- 2 ways of building new functions from existing ones:
 - composition
 - projections

Projection function: \(p^k : \mathbb{N}^k \rightarrow \mathbb{N} \)

\[p(x_1, x_2, \ldots, x_k) = x_i \]

- it goes from \(k \)-dimensional "space" into 1-dimensional "space"
- basic building blocks for PR functions.

If \(g_1, g_2, \ldots, g_m \) are functions \(\mathbb{N}^k \rightarrow \mathbb{N} \), and \(f \) is a function \(\mathbb{N}^m \rightarrow \mathbb{N} \),

\[h : \mathbb{N}^k \rightarrow \mathbb{N} \text{ given by} \]

\[h(x_1, x_2, \ldots, x_k) = f(g(x_1, x_2), \ldots, g(x_1, x_m)) \]

- \(h \) is formed from:

\[h = \text{comp} [f, g_1, \ldots, g_m] \]

\[h(x_1, x_2, x_3) = f(g(x_1, x_2), x_3) \]

Primitive recursion:

\(f : \mathbb{N}^k \rightarrow \mathbb{N} \)
\(g : \mathbb{N}^{k+2} \rightarrow \mathbb{N} \)

Then \(h : \mathbb{N}^{k+1} \rightarrow \mathbb{N} \) is said to be defined by PR form if \(f \) and \(g \) is:

\[h(x, 0) = f(x) \]

\[h(x, s(y)) = g(x, y, h(x, y)) \]

\[h = \text{PR}(f, g) \]
Def:
- Any PR function can be obtained from 0, S, P by composition and PR.
- 0 is PR, S, P are so.

A polynomial is a function can be obtained from const or variable by using multiplication / addition.

\[\text{Ex: } n^3 + n^2 + 5 \Rightarrow n^5: \text{result of } \text{mult} \quad \Rightarrow \text{PR} \quad \Rightarrow \]
\[n^3 + n^2 + 5: \text{result of } + \quad \Rightarrow \text{PR} \]

Ans:
- Exclusive OR:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A XOR B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

+ Two ways:

1. \[A \oplus B = (A \land \overline{B}) \lor (!A \land B) \]

2. \[AB + \overline{AB} \]

\[(!A \land \overline{B}) \lor (A \land B) \]

Logical notations:
- \(<, \leq, >, \geq, =, \neq, \land, \lor, \neg, \)
- if then statement

\[(a > 0) \Rightarrow a = -a \]

\[\text{if } (a > 0) \text{ then } a \text{ else } -a; \]

\[h(n) = \text{if } p(n) \text{ then } s(n) \text{ else } g(n) \]

PR | PR | PR

We want to prove \(h(n) \) is PR.
let's make it natural.

either \(p(n) \) and \(f(n) \) is the value.
or \(\overline{p(n)} \) and \(g(n) \) is the value.

\[
\text{not } p = 1 - p
\]
\[
A \oplus \overline{B} = A \cdot \overline{B}
\]
\[
A \oplus B = \overline{A} \cdot B + A \cdot \overline{B}
\]

\[
\left\lfloor p(n) \cdot f(n) + (1 - p(n)) \cdot g(n) \right\rfloor
\]

\[
\text{if } p(n) \text{ is true } \implies p(n) = 1 : 1 \cdot f(n) + 0 \cdot g(n) = f(n)
\]
\[
\text{false } \implies p(n) = 0 : 0 \cdot f(n) + 1 \cdot g(n) = g(n)
\]

By Tuesday

1) Prove that this is PR.

if \(\overline{p(n)} \) then \(\overline{f(n)} \)
else if \(\overline{g(n)} \) then \(\overline{g(n)} \)
else \(h(n) \)

4) Remainder:

\(\text{rem}(n) = 0 \)

\(\text{rem}(n) = \begin{cases}
(m \text{ rem } n + 1) & \text{if } (m \text{ rem } n + 1) < n \\
0 & \text{otherwise}
\end{cases} \)

\[0 \% 5 = 0 \rightarrow \text{prev. remainder} \]
\[0 + 1 \% 5 = 0 + 1 \]
\[2 \quad 4 + 1 \]
\[3 \quad 2 + 1 \]
\[\text{rem}(n, m+1) = \begin{cases} \text{rem}(n, m) + 1 & \text{if } (\text{rem}(n, m) + 1 < n) \\ \text{rem}(n, m) + 1 & \text{else} \quad 0 \end{cases} \]

\[f(n, m+1) = h(m, n, f(n, m)) \]

Proof:

\[\text{if } (f+1 < n) \text{ then } f+1 \]
\[\text{else } 0 \]

\[d \]

Division:

\[0 / n = 0 \]

\[m + 1 / n = \begin{cases} \text{if } (m + 1) / n = 0 \text{ then } (m + 1) / n + 1 \\ \text{else } m / n \end{cases} \]

\[13 / 3 = 4 \]
\[15 / 3 = 5 \]
\[17 / 3 = 5 \]
\[19 / 3 = 4 \]
\[16 / 3 = 5 \]
\[18 / 3 = 6 \]

\[f(n, 0) = 0 \]

\[f(n, m+1) = \begin{cases} \text{if } (m + 1) / n = 0 \text{ then } f(n, m) + 1 \\ \text{else } f(n, m) \end{cases} \]

\[h(n, m, f(n, m)) \]

\[2 \]

Is every computable function P recursive? 2

2 proofs:

< more detailed, easier proof
< less detailed, more natural

Theorem: There exists a computable function which is not P.
Way 1: \(\text{PR \& \& (n)} \Rightarrow \text{PR (0, 0, \sigma, \Pi)} \)

\[\text{LaTeX: PR (0, \lor \text{some} \lor \text{ore, } \lor \Pi \rightarrow \Pi)} \]

\[0 \rightarrow 1 \]

\[C = \text{code of a PR } \#(n) \]

+ Computable but not PR.

\[f(n) = \begin{cases} 1 & \text{if } \#(n) \text{ is a valid code} \\ f(n) + 1 & \text{else} \end{cases} \]

Statement: \(f \) is not PR.

Proof by contradiction:

Let \(f \) be PR.

Then it has a code \(e \).

\[f(n) = \#(n) \Rightarrow f(e) = f_{e}(e) \]

by def. since \(e \) is a valid code.

Then apply \(f_{c}(c) = f_{e}(c) + 1 \)

\[\Rightarrow f(c) = f_{e}(c) + 1 \]

\[\Rightarrow 0 = 1 \]

contra.
Theorem: Not every computable function is PR.

We will construct a function \(f(n) \) which is
- computable
- not PR.

1st part: Codes of PR \(f \)s (PR functions).

Goal: assign to every PR \(f \) a number.

We start with an expression \(PR(\Pi^0_1 \Delta \sigma^0_1 \circ 0) \).

Strings:

\(PR(\Pi^0_1 \Delta \sigma^0_1 \circ 0) \) → \(ASCI \)

The strings of binary 0, 1: 0110...111

Lucky put 1 in front.

\(10110 ... 1 ... 1 \) ...

(in order to differentiate the code)

\(101 = 3 \)
\(1001 = 5 \)
\(11001 = 9 \)

\(\vdots \) code of a PR \(f \).

Statement: There is an algorithm that gives a natural number \(c \) that checks whether \(c \) is a valid code of a PR \(f \).

If it's produces a valid code \(f \) for computing the corresponding PR \(f \).
Idea:
1. Strip off the \(\oplus \) in front of every piece of code.
2. Check if all combinations are \(\setminus \) symbols.
3. Let \(Y \) compute checks if the syntax is correct.
4. Check syntax.

\[
\text{for } i = 0, i < n, i++ \text{ do } h = g_i
\]

\[
\text{for } i = 0, i < n, i++ \text{ do } h = f_i
\]

* **n**:

```
if \( n \) is a valid code of a LR fn.

return 0
```

```
apply \( f_n \) to \( n \)

return \( f_n(n) + 1 \)
```

If this shows \(f \) is computable.
\[f(n) = \begin{cases} fn(n) + 1 & \text{if } n \text{ is a valid code of a P.E.} \\ 0 & \text{otherwise} \end{cases} \]

We assume that \(f \) is P.E.

Then \(f \) is represented by some exp. that exp has a code \(c \).

\[f_c(x) = f(x) \]

Since \(c \) is valid code, by definition of \(f \), we have

\[f(c) = f_c(c) + 1 \]

In particular for \(x = c \)

\[f(c) = f_c(c) \]

\[\Rightarrow f_c(c) + 1 = f(c) \]

\(\Rightarrow 1 = 0 \)

(incorrect)

\[\Rightarrow \text{by contradiction we have shown that } f \text{ is not P.E.} \]

Georg Cantor
1845 - 1918

Kantor's proof: we only care about the existence of P.E. proof: we also care about computability.

Diagonalization

Result: \(f \) is computable for which is not P.E.

1st proof: \(f \) is meaningless.

2nd proof: \(f \) is meaningful but the proof is more difficult.
Reminder:
we started with 0
\[a + b = a + 1 + 1 + 1 + 1 \]
\[\text{b times} \]
\[a + a + a + a \]
\[\text{b times} \]
\[a \times a \times a \times a \]
\[\text{b times} \]
level 0: \[f_0(n, m) = n + 1 \]
level 1: \[f_0(n, f_0(n, m)) \]

\[f_1(n, 0) = 0 \]
\[f_1(n, m + 1) = f_0(f_1(n, m), f_1(n, m)) \]

\[f_2(n, m + 1) = f_1(f_2(n, m), n) \]

\[f_3(n, m + 1) = f_2(f_3(n, m), n) \]

\[\vdots \]

\[f_{k+1}(n, m + 1) = f_k(f_{k+1}(n, m), n) \]

\[\Rightarrow \text{Archimedes.} \]

\[a \times b \times \text{b times} = a \]

\[A(n) = f_n(n, n) \]

Ackermann's function.
Ackermann

\[A(0) = \delta_0(0,0) = 1 \]
\[A(1) = \delta_1(1,1) = 1 + 1 = 2 \]
\[A(2) = \delta_2(2,2) = 2 \times 2 = 4 \]
\[A(3) = \delta_3(3,3) = 3^3 = 27 \]
\[A(4) = \delta_4(4,4) = 4^{4^4} = 4 \uparrow\uparrow\uparrow \uparrow 4 \approx 10^{10^{10^{1.3}}} \]

\[\text{used: } 6.7 \times 10^{360} \]

\[\text{By Tuesday: Ask Dr. VK -> theory project topic} \]

Prove that \(A(n) \) is not PR

\[A(n) = \delta_n(n,n) \]

\[\text{if } \leq k \text{ for loops } \Rightarrow f \leq A_k(n,n) \]

\[\Rightarrow \text{ Don't use for loops to prove.} \]
\[0 \rightarrow \delta(0), \delta(\delta(0)) \]
\[\rightarrow \delta(\delta(\delta(0))), \delta(\delta(\delta(\delta(0)))) \]
\[n, n+1, n+2 \]

\[\exists \text{ list: } \]
\[f(n) \leq n+c \]
\[f(n_1, n_2, \ldots, n_k) \leq n_1 + c \]

\[f(n, 0) = g(n) \]
\[f(n, m+1) = h(n, m, f(n, m)) \]

\[f(0) = g \]
\[f(m+1) = \max (m, f(m)) \leq \max (m, f(m)) + e \]
\[(1, c) \text{ constant} \]
\[f(0) = 0 \]

\[f(n+1) = h(n, f(n)) + c \leq \max(\bar{g}, c) + c \leq \bar{g} + c \]

\[f(1+1) = h(n, f(1)) + c \leq \max(\bar{g}, c) \leq \bar{g} + 2c \]

For no for-loops:

\[f(n) \leq n + 1 + \ldots + 1 \]

const times

For one for-loop:

\[f(n) \leq n + \ldots + n + \bar{g} \]

const times

\[i^{\text{th}} \]

\[n+1 \]

\[n+2n \]

\[n^2 \]

\[n^n \]

1. Turn in project title proposal \(\rightarrow \) PR

2. Prove that not every computable fn is \(\rightarrow \) PR

First hypothesis: Every computable fn is \(\rightarrow \) PR.

Fact: There exists a computable fn is NOT \(\rightarrow \) PR.

\(\exists \) : Ackermann fn, \(\#(n) \).

Natural idea:

Add \(\#(n) \) to basic funs, \(0, 1, \overline{\text{c}}, \text{ and } \#(n) \).
If then \(\forall \) using while loop.
For \(\forall \) we need to formulate while loop.

Boolean \(\forall \) Big diff: \# of iterations is not explicitly known, determined by a condition.

\[
\text{while} \left(\, \text{??} \, \right) \quad \{ \ldots \} \quad \text{\# of iterations = smallest } \mu \text{ for which } f(n, m) \text{ is true}
\]

\[
\mu - \text{reconstruction:} \quad \mu(n, m) = \mu(m, f(n_1, n_2, \ldots n_k, m))
\]

\(\mu = "\mu\mu". \)

\(\rightarrow \) A \(\mu \)-recursive fn is any fn which can be obtained from \(0, \sigma, \Pi_k, \) by \(\sigma, \Pi_k \) and \(\mu \)-reconstruction:

\[
f(n, m) = \mu m. \ f(n, m) \quad m = 0 \quad \text{while} \left(\, \text{??} \, \right)
\]

\[
a - b = c \quad \text{st.} \quad (\text{such that})
\]

\[
c + b = a
\]

\[
m + s
\]

\[
\mu(c + b = a)
\]

\[
\text{smallest } c = \mu c
\]

\[
\Rightarrow \mu c (c + b > a) : a \leq b \quad \mu c = 0
\]

\[
\mu c (c + b > a) : a > b
\]

3. Describe
\(a / b. \)

4. Describe \(\lim. \)
\(f(n) = \begin{cases} 1 & \text{if } n = 2 \\ 2 & \text{if } n = 1 \\ \text{undef, otherwise} \end{cases} \)
\(f(n) = \begin{cases}
\mu m ((0 \land m \neq 0) \lor (n = 0 \land m = 0)) \\
\text{while } (!((0 = 2)) \\
\text{if } m = 1 \text{ then } r \text{ if } \text{undefined otherwise} \\
\text{if } n = 0 \text{ then return } 0 \\
\text{if } n > 0 \text{ then undefined}
\end{cases} \)

This fn. is never defined.

\(f(n) = \begin{cases}
0 & \text{if } n = 0 \\
\text{otherwise}
\end{cases} \)

\(f(n) = \begin{cases}
1 & \text{if } n = 2 \\
2 & \text{if } n = 3 \\
\text{undefined otherwise}
\end{cases} \)

\(\mu m \left[(n = 2) \land (m = 1) \lor (n = 3) \land (m = 2) \right] \)

\(m \): smallest number makes fn. satisfiable.

\(\mu \)-recursive functions may be undefined.

Totally recursive = \(\mu \)-recursive and everywhere defined.

every Java program can be described as a \(\mu \)-recursive fn.

Important:

In 1930s, 2 different def's appeared:
- Recursion (church) based on a prog. lang.
Reproduce = write detailed proof.

$$f_n(n) + 1$$

+ proof has to be completely clear.

Computable = μ-recursive.

big problems with while-loops: go into infinite loops

// halt, queue < stop, stand in line

Theory: no algorithm is possible that given a problem program p and data d would to check whether p halts on d (data) or not.

$\text{halte}\text{checker}(p, d) = \begin{cases} \text{yes} & \text{if } p \text{ halts on } d. \\ \text{no} & \text{otherwise.} \end{cases}$

Reduction to a contradiction: let's assume that haltechecker exists.

$$f_n(n) = \begin{cases} f_n(n) + 1 & \text{if } n \text{ is a valid C code program} \\ 0 & \text{otherwise} \end{cases}$$
- with \(x = c \) \(\rightarrow f_c(x) = f(x) \rightarrow f(x) = f(c) \) \(\text{(2)} \)

- By definition of \(f \), since \(c \) is a valid code, \(f_c \)
 always halts
 \[f_c(c) = f(c) + 1 \] \(\text{(1)} \)

\(\text{(1)}, \text{(2)} \rightarrow \text{contradiction} \)

- Assume: If \(f \) is computable, then there is a code \(c \) for (by some Java program, let's denote by \(\text{\(f(c) \)}} \)\)
 the code of [Java program, particular \(x = c \)]\n \[f_c(x) = f(x) \]

1) Redo proof.
2) Reproduce halting proof.

A program

\begin{verbatim}
1) does it halt?
2) if it halts, does it produce correct results?

we want \(\forall x (f(x) = 0) \).

public static int zero (int x) {
 return 0;
}
\end{verbatim}

Def: A zero checker is a program \(p \) that given \(p \) that always halt, checks whether \(\forall x (p(x) = 0) \).

\[\text{zero checker}(p) = \begin{cases}
 \text{yes} & \text{if} \; \forall x (p(x) = 0) \\
 \text{no} & \text{otherwise}
\end{cases} \]

Theorem: Zero checkers do not exist.
1. Assume zero checkers exist.
2. Build halt checkers on top of zero checkers \rightarrow haltcheckers exist!
3. However, halt checkers don't exist \rightarrow so neither do zero checkers!

We assume that zero checkers exist, and we will conclude that a halt checker exists.

$$\text{halt checker } (p, d) = \begin{cases} 1 & \text{if } p \text{ halts on } d \\ 0 & \text{if } p \text{ does not halt on } d \end{cases}$$

we can design:

$$\text{halt } (p, d, t) = \begin{cases} 1 & \text{if } p \text{ halts on } d \text{ by time } (t) \\ 0 & \text{otherwise} \end{cases}$$

p halts on d \iff there exists $a +$ such that p halts on d and p does not $= \forall t \ p$ does not halt on d.

we define:

$$f_{p,d}(t) = \text{halt}(p, d, t)$$

Zero checker: $f_{p,d} = \emptyset$
- Apply zero checker to $f_{p,d}$.

$$\text{halt checker } = \neg \text{ Zero checker } \left(f_{p,d} \right)$$

3. Reproduce zero checker proof.

Square checker $(p) = \begin{cases} 1 & \text{if } \forall x \ p(x) = x^2 \\ 0 & \text{otherwise} \end{cases}$

Theorem: square checker is uncomputable.
1. Prove that a square checker exists and we will build a zero checker.

\[q \rightarrow 1. \forall x. q(x) = x^2 \]

Zero checker:
\[
\text{zero checker}(p) \equiv \text{square checker}(p(x^2))
\]
\[
\forall x. p(x) + x^2 = x^2
\]
\[
\forall x. (p(x)) = 0
\]

4. Prove no \(\mu\) checker does not exist.

\(\mu\) reason.

Open problem:

- if \(n\) is even \(n = n/2\)
- if \(n\) is odd \(n = 3n + 1\)

\(a/b = \mu c (c(b+1) > a)\)

Church \(\mu\)-recursive:
- \(\varepsilon, \xi, \Pi^k\), \(\varepsilon, \xi\) \(\mu\)-recursive

Turing Machines:

- can we compute every \(\mu\)-recursive fun on a Turing machine?
Binary code: 0 1 1
2 1
3 1

Start: # 1 ... 1 #

Result: # 1 ... 1 #

f(n)

Function: return 0;

Function: Add 1:

(start, #) → (R, reading)
(reading, 1) → (R, reading)
(reading, #) → (L, erasing)
(erasing, 1) → (L, #, erasing) replace 1 by #
(erasing, #) → halt.

Function: Add 1:

(start, #) → (R, reading)
(reading, 1) → (R, reading)
(reading, #) → (L, 1, back)
(back, 1) → (L, back)
(back, #) → halt.
1. Design a TM that computes $f(n) = n + 2$.

 // Use the 'state' wisely.

 function projection $\Pi^2_3((n_1, n_2)) \rightarrow n_1$

 (start, #) \rightarrow (R, in1 right)

 (in1 right, #) \rightarrow (R, in1 right)

 (in1 right, 1) \rightarrow (R, in2 right)

 (in2 right, #) \rightarrow (L, #, erase2no)

 replace

 (erase2no, 1) \rightarrow (L, erase2no)

 (erase2no, #) \rightarrow (L, in1 left)

 (in1 left, 1) \rightarrow (L, in1 left)

 (in1 left, #) \rightarrow inhalt

2. TM: Π^3_4 $f(n_1, n_2, n_3) = n_1$

3. Extra credit: Π^2_2 $f(n_1, n_2) = n_2$