7) Is there any set that is not decidable?

- \(\langle p, q \rangle \) is decidable only if \(p \) always returns \(0 \) \(\rightarrow \) not decidable
- \(p \) is decidable \(\rightarrow \) not decidable

Def. A set \(A \) is called recursively enumerable if there is an algorithm that eventually prints all elements of \(A \).

\[
\begin{align*}
& n = 0 \\
& \text{while (true) } \\
& \quad \text{System.out.println();} \\
& \quad y
\end{align*}
\]

if \(A \) is decidable + \(A \) decidable

\[A = \{ x ; x \in A \} \]

\[+ A \text{ is decidable} \]

Means: there exists an algorithm that given \(n \), checks whether \(n \in A \).

\[+ \text{We want to prove}: \bar{A} \text{ is decidable} \]

\[+ \text{we need an algorithm} \]

\[n \rightarrow \Box \rightarrow \text{we need an algorithm} \]

\[\text{incomp.} A(n) \]

\[\text{incomp.} A(n) = \begin{cases} 1 & \text{if } n \in \bar{A} \Rightarrow n \notin A \\ 0 & \text{otherwise} \end{cases} \]

\[+ A \text{ decidable } \Rightarrow \exists \text{ algorithm}, \text{given } a, \text{ can check whether } a \in \bar{A} \]

\[+ A \text{ (e) } \Rightarrow \exists \text{ algorithm that eventually prints } (\text{semi-decidable}) \text{ all elements of } A \]
\(r.e. = \text{recursively enumerable} \)

1. \(\mathbb{N} \) is r.e.
2. \(\emptyset \) is r.e.
3. Every decidable set is r.e.
4. Finite sets are r.e. since they are decidable.
5. Every infinite set is r.e.
6. If \(A \) is r.e. \(\Rightarrow \) \(A \cup B \) is r.e.
7. If \(A \) is r.e. and \(B \) is r.e.
 then \(A \cap B \) is r.e.
 - run in \(A \) for 1 hr (make a partial list)
 - run in \(B \) for 1 hr (partial)
 - print all common elements
 - run in \(A \) for 1 hr more (repeating)

8. If \(A \) is r.e. and \(\overline{A} \) is r.e.
 then \(A \) is decidable.
Algorithm:

run in A for 1 hr

\neg run in A for 1 hr

we stop when n

appears in one of

the lists.

9) If A is r.e., then $\neg A$ is r.e. 22 NO WAY

Recall: we had an example of a set which is not decidable:

$H = \{(p, d) | p$ halts and \}

H is r.e. but not decidable. !< can not check if $(1, 0) \in H$

S1) Run programs 0 and 1

for 1 hr on data 0, 1.

S2) If halts print (p, d)

run programs 2, 3, and 4.

for 2 hrs on data 0, 1, 2.

S3

10) There exists a set A which is r.e. but not decidable

11) Is there any set r.e.?

No, there is a set which is not r.e.

\neg Halting \// complement to Halting set.

\[\neg \text{decidable set} \quad \text{r.e. set} \quad \text{all sets.} \]

\[\text{Halting} \quad \text{all sets.} \]
\[m_A(n) = \begin{cases} 1 & \text{if } n \in A \\ 0 & \text{otherwise} \end{cases} \]

Semidecider:

\[m_A(n) = \begin{cases} \emptyset & \text{if } n \notin A \\ \text{(runs indefinitely)} & \text{if } n \in A \end{cases} \]

If \(A \) is r.e. \(\implies \) \(m_A(n) \) is a semi-decidable
- Have an algorithm that prints all elements in \(A \).

- \(m_A(n) \) waits and checks every hour \(\delta \) whether \(n \) was printed.

- If \(m_A(n) \) halts: \(\text{true} \) \(\implies \) \(n \in A \)

- \(\text{runs indefinitely} \implies m_A(n) \)

If \(A \) is semi-decidable then \(A \) is r.e.