Is there a set which is not decidable?

\[\{ \langle p, o \rangle : p \text{ halts on } o \} \text{ is not decidable}. \]

The set of all programs, \(\{ p : p \text{ always returns} \} \) is not decidable.

Def: A set \(A \) is called recursively enumerable (r.e.) if \(\exists \) an algorithm that eventually prints all elements of \(A \).

\[
\begin{align*}
 n &= 0 \\
 \{ \text{while (true) } &\text{ system.out.println (n);}
 \quad n + 1 \} \tag{This shows that \(\{n\} \) is recursively enumerable.}
\end{align*}
\]

- \(A \) is decidable:–

we know: \(A \) is decidable.

means: there exists an algorithm that, given \(n \), checks whether \(n \notin A \).

\[
\begin{align*}
 \text{public static boolean inA (int n) } &\quad \{ \quad \\
 \text{we want to prove:– \(A \) is decidable.} \\
 \quad n \rightarrow \square \quad \text{we want to have:} \\
 \quad \text{an algorithm inCompToA(n)}: \\
 \quad \text{inComplementToA(n)} = \begin{cases}
 \text{true} & \text{if } n \notin A \\
 \text{false} & \text{otherwise}
 \end{cases} \\
 \quad \text{public static boolean inCompToA (int n) } &\quad \{ \text{return } ! \text{inA(n)}; \} \\
 \quad n \in - A \iff n \notin A \\
 \end{align*}
\]

A decidable \(\iff \exists \) algorithm that, given \(n \), check whether \(n \in A \).

A r.e. \(\iff \exists \) algorithm that eventually prints all elements of \(A \).

\(\text{if semi-decidable.} \)

\(\text{ } \)

\(\text{N is r.e.} \)
2. \(\emptyset \) is r.e.

3. Every decidable set r.e.

 Let's say, \(A \) is decidable.

   ```java
   public static boolean inA(int n)
   n = 0;
   while (true) {
     if (inA(n))
       System.out.println(n);
     n++;
   }
   ```

 Thus we can print all n \(\in A \).

 Another way is by flowchart:

4. Every finite set is r.e. \(\rightarrow \) since finite set is decidable.

5. Every co-finite (completely not to finite) set is r.e. \(\rightarrow \) since (finite set) is decidable.

6. If \(A \) is r.e. \& \(B \) is r.e. then \(A \cup B \) is r.e.?

 We have \(n \in A \) \& \(n \in B \).

 Proof:

 - Run \(inA \) for 1 hour
 - Run \(inB \) for 1 hour

 time-sharing algorithm:

 Run \(inA \) for 1 more hr

 Run \(inB \) for 1 more hr

 Thus, we print...

 \(A \cup B \).

7. If \(A \) is r.e \& \(B \) is r.e. then \(A \cap B \) is r.e.?

 Run \(inA \) for 1 hr. (make partial list)

 Run \(inB \) for 1 hr. (in)

 Print all common elements.

 Run \(inA \) for 1 more hr. (make longer list)

 Run \(inB \) for 1 more hr. (in)

 \(n \in A \cap B \)

 Print all common elements.

 \(t_A \) \& \(t_B \) \& time to appear in \(A \)

 \(t_A \) \& \(t_B \) \& time to appear in \(B \)

 Thus, appearance time in \(A \cap B \)

 is always \(2 \times \max (t_A, t_B) \)

 Here: \(2 \times 11 = 22 \) ms.
If A is r.e. \overline{A} is r.e., then A is decidable.

Decidable means checks if any $n \in$ set.

Stops when n appears in one of the lists.

If A is r.e., is the $-A$ is r.e.? This is wrong hypothesis.

We had an example of a set which is not decidable.

$H = \mathcal{E}(p, d): p \text{ halts on } d$

All rational numbers

irrespective of the order, we can

$\frac{1}{2} - \frac{1}{2} - \frac{1}{3} - \frac{1}{4} - \frac{1}{5}$

print all $n \in \mathbb{N}$

run program #0 and #1 for 1 hr on data 0, 1.

if halts print (p, d).

run programs 0, 1, and 2 for 2 hrs on data 0, 1, 2.

if halts print (p, d).

run programs 0, 1, 2, 3 for 3 hr on data 0, 1, 2, 3.

if halts print (p, d).

Thus half-checker is r.e.

Thus there exist a set which is r.e., but not decidable.

Thus there exist A which is r.e., but $-A$ is not r.e.

Is every set r.e.?

No, there is a set which is not r.e.

halft-checker
Semi-decidable:

\[\text{in} A(n) = \begin{cases} \text{true} & \text{if } n \in A \\ \text{false} & \text{if } n \notin A \end{cases} \]

If \(A \) is r.e., then \(A \) is semi-decidable.

Suppose we have an algorithm that prints all elements of \(A \). It waits for every hour checks whether \(n \) was printed.

If \(A \) is semi-decidable, run \(\text{in} A \) on 0, 1, 2 for 1hr.

If it halts we print the corr #

run \(\text{in} A \) on 0, 1, 2 for 2hr.

If it halts print

...