// some code:

int positive = 0

for (i = 0; i < n; i++)
 positive = 1;

Mar 10, 09

+ Thursday 3/12
 - Go over problems
 - Quiz 1 Mini Test

+ Friday 3/13

Spring break.

T: 3/24

R: 3/26

Project progress report

Luc Langre

Problem: We need to separate feasible algorithms from non-feasible ones.

Examples:
+ n^2 — feasible
+ 2^n — not feasible

Definition:

$$t^w(n) = \max t_k(x)$$

$x: \text{len}(x) = n$

An algorithm u is called feasible if there exists a polynomial $p(n) \leq t^w(n)$.
\[\forall n \quad t_w(n) \leq \mathcal{O}(n) \]

- Important fact:

This definition does not fully reflect the notion of feasibility.

- Ex 1: \[t_w(n) = 10^{1000} \cdot n \]
 - commonsense viewpoint: not feasible
 - definition: still polynomial: feasible!

- Ex 2: \[t_w(n) = \exp(\#0,000,000,01 \cdot n) \]
 - commonsense viewpoint: feasible
 - definition: NOT feasible

Problem: No one knows how to produce a better definition.

We can use the knowingly imperfect definition of feasibility.

What is a problem:

\[
\begin{array}{c}
\text{input} \\
\rightarrow \\
\rightarrow \\
\text{output} \\
\text{condition} \\
\text{x} \\
\leftarrow \\
\text{y} \\
\end{array}
\]

Mathematics: \(x \) - statement, \(y \) - proof of \(x \) or \(\neg x \).
Comments:
Checking where \(y \) is the correct proof of \(x \) is relatively easy.

The length of the proof should be feasible.

- Condition \(R(x, y) \) is feasible:
 \[\text{len}(y) \leq p(x) \text{len}(x) \]

We have:
- feasible predicate \(R(x, y) \) returns \(T/F \).
- polynomial \(p(x) \).

Given \(x \): statement
we want: find \(y \) such that
\[R(x, y) \text{ and } \text{len}(y) \leq p(x) \text{len}(x) \]

Physics:
- \(x \): observation
- \(y \): theory that explains observation.

\(R(x,y) \): check whether the observations are consistent with the data.
\[\text{len}(y) \leq \text{len}(x) \]

Engineers
- \(x \): specification (cat, how much it weighs, wind)
- \(y \): design

\(R(x, y) \): feasible.
In principle every practical problem can be algorithmically solved by trying all binary strings y of length $\leq \text{len}(x)$.

Problem: We need 2^n time, not feasible.

Good news: if we guess an answer then we can check its correctness in polynomial time.

A pr. problem = can be solved on a non-deterministic TM in a polynomial time.

$NP = \text{Non-deterministic Polynomial}$

$= \text{class of all practical problems}$

- CS problems x - original list
 y - sorted list
 $r(x, y), \text{len}(y) = \text{len}(x)$

P = class of all problems which can be solved by a feasible algorithm

Is it possible to solve any practical problem in reasonable time?

\rightarrow Open problem / Don't know.

Reduction: if there is an algorithm to solve a problem in class A => also can be used to solve other problems in the same class A.

Humanity, x - emotions
y - a form
\[N^2 = P \]

\[ax^2 + bx + c = 0 \]

\[ax + b \]