1. A \(A \cap B \) where \(A \) and \(B \) are r.e. is r.e.

 Proof: Assuming that it is ok to repeat, the computer can print the elements from \(A \) for 1 hour and then the elements from \(B \) for 1 hr, search for the elements in common and print them as \(A \cap B \), repeat this until finished.

2. A is r.e.
 B is decidable

 \(A \cap B \) always r.e.?

 Yes. By definition, \(B \), which is decidable, is also r.e. Since \(A \) and \(B \) are r.e. then by the proof on 1, \(A \cap B \) is r.e.

 \(A \cap B \) always decidable?

 No. The set \(H \) (halt checker) is r.e. but not decidable. If we have \(B = \mathbb{N} \), then \(A \cap B = H \cap \mathbb{N} = H \) \(\uparrow \). Since \(H \) is r.e., but not decidable, we have shown that it is not always decidable (\(A \cap B \) with r.e. and dec.)

3. We can prove this by assuming that this is possible and we call this \(T \)-check.
 To prove that it is not possible, we construct a zero-checker, which we know is impossible, because with a zero-checker we could construct a halt-checker which is also impossible as shown in class.

 ![Zero-checker diagram](image)

 1. public static int q(int p)

 return p(n)+n+1

 p=0 \iff p(n)=n+1

 zero-checker \(q(n) \) = \(T \)-checker \(q(n)+n+1 \)

 Case 1 \(\forall n (p(n) \leq 0) \):

 \(q(n)=p(n)+n+1 \rightarrow \) then

 \(q(n)=p(n)+n+1 \rightarrow \) then

 Case 2 \(\exists n (p(n)>0) \):

 \(q(n)=p(n)+n+1 \rightarrow \) then

 \(q(n)=p(n)+n+1 \rightarrow \) then
Therefore, we have shown that it is not possible to have a program that always checks if $O(n) = n + 1$, because then we could build a zero and halt checker which are impossible.

\[O_1^2 \text{ and } O \]

\[O_1^2: \]

\[
\begin{align*}
(\text{start}, 1, #) &\rightarrow (\text{inRight}, 1, R) \\
(\text{inRight}, 1, 1) &\rightarrow (\text{inRight}, 1, R) \\
(\text{inRight}, 1, #) &\rightarrow (\text{inRight}, 2, R) \\
(\text{inRight}, 2, 1) &\rightarrow (\text{inRight}, 2, #, R) \\
(\text{inRight}, 2, #) &\rightarrow (\text{goBack}, 1, L) \\
(\text{goBack}, 1, 1) &\rightarrow (\text{goBack}, 2, L) \\
(\text{goBack}, 1, 1) &\rightarrow (\text{goBack}, 1, L) \\
(\text{goBack}, 2, 1) &\rightarrow (\text{goBack}, 2, L) \\
(\text{goBack}, 2, #) &\rightarrow (\text{start})
\end{align*}
\]

\[\boxed{\text{halt} 1} \]

\[O: \]

\[
\begin{align*}
(\text{start}, 2, #) &\rightarrow (\text{goRight}, R) \\
(\text{goRight}, 1) &\rightarrow (\text{goRight}, R) \\
(\text{goRight}, 1) &\rightarrow (\text{return}, 1, L) \\
(\text{return}, 1) &\rightarrow (\text{return}, L) \\
(\text{return}, #) &\rightarrow (\text{halt})
\end{align*}
\]

The third TM is created just by replacing \text{start} with \text{start} 2.

Trace (1, 1)

\[# \ 1 \ # \ 1 \]

\[\text{start} 1 \]

\[# \ 1 \ # \ 1 \]

\[\text{inRight} 1 \]

\[# \ 1 \ # \ 1 \]

\[\text{inRight} 2 \]

\[# \ 1 \ # \ 1 \]

\[\text{inRight} 2 \]

\[# \ 1 \ # \ 1 \]

\[\text{goBack} 1 \]

\[# \ 1 \ # \]

\[\text{goRight} \]

\[# \ 1 \ # \]

\[\text{return} \]

\[# \ 1 \ # \]

\[\text{return} \]

\[# \ 1 \ # \]

\[\text{halt} \]

\[\sqrt{2} \]
(6) \[S = 0 \]
for \(\text{int } i = 1; i <= a; i++ \)
\[S = S - b \]

\[S(0, b) = 0 \]
\[S(m+1, b) = S(m) - b \]
\[f(0, n) = 0 = g(n) = 0 \]
\[f(m+1, n) = f(m) - n \]
\[f(m+1, n) = h(m, n, f(m, n)) = \text{minus}(\frac{m^3}{3}, \frac{n^3}{2}) \]

Then, \[S = PR(0, \text{minus}(\frac{m^3}{3}, \frac{n^3}{2})) \]

When \(b = 2 \) and \(a = 3 \)

\[\begin{array}{c|ccc}
 i & S & a & b \\
 \hline
 0 & 0 & 3 & 2 \\
 1 & -2 & 3 & 2 \\
 2 & -4 & 3 & 2 \\
 3 & -6 & 3 & 2 \\
\end{array} \]

\[S = -6 \]

(7) From (6), we already have a PR expression for \[S = PR(0, \text{minus}(\frac{m^3}{3}, \frac{n^3}{2})) \]
We obtain \[\mu_m \text{ as: } \mu_m(S < a) \]
\[d = \mu_m(S < a) \]

Therefore, \(F(b, a) = S(d, b) \) where \(d = \mu_m(S < a) \) and
\[S = PR(0, \text{minus}(\frac{m^3}{3}, \frac{n^3}{2})) \]

\[\begin{array}{c|cc}
 b & a & 3 \\
 \hline
 0 & 3 & 2 \\
 -2 & 3 & 2 \\
 -4 & 3 & 2 \\
\end{array} \]

(8) We can only find an upper bound for the Kolmogorov complexity.
for \(\text{int } i = 1; i <= 2015; i++ \)
\[\text{System.out.print("10");} \]
\[48 \text{ characters} \]
Therefore \[K_e(x) \leq 48 \]
Step 1: Truth table assuming a and b are binary 1 digit values:

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>F</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Step 2: Get DNF form for T_F

$T_F = (\neg a \& \neg b) V (\neg a \& b) V (a \& b)$

With De Morgan we obtain F in CNF form

$F = \neg \left[(\neg a \& \neg b) V (\neg a \& b) V (a \& b) \right]$

CNF form: $F = (a \lor b) \& (a \lor \neg b) \& (\neg a \lor b)$

10. P is a problem that can be solved in polynomial time: $\exists P(n) \forall n; t(n) \leq P(n)$

NP are non-deterministic polynomial problems for which once we have a guess we have a feasible algorithm $C(x,y)$ to know if the answer is correct in polynomial time.

NP-hard is a problem harder than all NP problems. Any NP problem can be reduced to an NP-hard problem.

NP-complete is an NP problem that is also NP-hard.

Sorting takes polynomial time so it is P. It can also be represented as a guess of the correct order so it is also NP. If $P \neq NP$, then this problem is not NP-hard or NP-complete.

Prop SAT

It is NP and NP-hard, because all NP problems can be reduced to it. Therefore it is also NP-complete. There is no proof that $P \neq NP$ therefore if $P = NP$ then SAT is also P, but if $P \neq NP$ SAT is not P.

(4)