Proof that there exists a function that it is not \(f_a \).

- Explain what is a code, \(C \).
- Code: You start with an expression \(f_a(0,1,\ldots) \).
 - Use later to translate into ASCII
 - \(\varepsilon \to \backslash \varnothing \), \(\forall \to \backslash \forall \), \(\circ \to \backslash \circ \), \(\circ \to \backslash \circ \).
 - You use ASCII code to transform this expression into 0s and 1s.
 - Append a in front of this sequence of 0s and 1s.
 - We will interpret the resulting sequence as a natural number. This number is called a code of a \(f_a \) function.

\[\text{Proof:} \]

\[\text{Let's define a function} \]

- Lemma: There exists an algorithm \(U \) that
 - given a natural number \(C \), checks whether
 - \(C \) is a code of a \(f_a \) function, and
 - if yes, returns the executable file computing the value of this \(f_a \) function.

\[\text{This file will be denoted } f_C. \]
Let's define a function
\[f(c) = \begin{cases} \frac{c}{c} + 1 & \text{if } c \text{ is a code of a P.R. function} \\ \emptyset & \text{otherwise} \end{cases} \]
This can be 2 or 3, etc.
We add for the proof.

We will prove that \(f \) is computable and that \(f \) is not P.R.

To prove that \(f \) is computable, we show how to compute it.

First, we use alg. \(V \) to check whether \(c \) is a code of a P.R. function if not we return \(\emptyset \).
If yes, we use alg. \(V \) to produce \(f(c) \)
we run \(f(c) \) and we use \(c \) as the input.
Finally, we add one to the result \(f(c) \)
so we get \(f(c) + 1 \)

So \(f \) is computable. Now prove that \(f \) is not P.R.
We prove by contradiction.
Let's assume that \(f \) is P.R. and let's show that this assumption leads to a contradiction.
Since \(f \) is P.R. it has a code, let's denote this code as \(C_f \)

So, by apply \(V \) to \(C_f \), we get an executable file \(f_{C_f} \) that computes the function \(f(c) \).
This means that for every input \(n \)
\[f_{C_f}(n) = f(n) \]

This is true for every \(n \).
In particular, it is true for \(n = c_0 \)
\[f_{C_f}(c_0) = f(c_0) \]

Let's go back to the definition of function \(f \),
What is \(f(c_0) \)?
Is \(c_0 \) a code of a P.R. function? Yes, see here.
What is F(x)? Is it a code of a P.R. function? Yes, see here.

Since F(x) is a code,
\[F(\omega) = e_{\omega}(\omega) + 1 \]
\[\omega = 1 \]
So F is not P.R.

All for loops can be computed with while loops, but not the other way around.

```c
int sum=0;
for(int i = 1; i <= b; i++)
  sum=sum+i;
```

The value of sum depends on the parameter a and on the moment of time m.

1. \(\text{sum}(a,0) = a \)
2. The value of sum depends on the previous moment of time \(t \):
 \(\text{sum}(a,m+1) = \text{sum}(a,m) + 1 \)

- Factorial
```c
int fact=1;
for(int i = 1; i <= a; i++)
  fact=fact \* i;
```

```
f(n_1, \ldots, n_k, 0) = g(n_1, \ldots, n_k)
f(n_1, \ldots, n_k, m+1) = h(n_1, \ldots, n_k, m, f(n_1, \ldots, n_k, m))$
```
```
int f = g(n_1, \ldots, n_k);
for(int i = 1; i <= a; i++)
  f = h(n_1, \ldots, n_k, i-1, f);
```

Composition:
```
\( f \circ g \) = \text{P.R}(D, \emptyset, \text{mult}(\mathbb{N}_2, \mathbb{N}_2))\]
\[ F(0) = g(0) = 1 \]
\[ F(m+1) = h_{m, F(m)} = F(m) \times (m+1) \]

\[
\begin{align*}
& F = 1; \\
& \text{for } \text{int } i = 0; i < n; i++ \\
& \quad F = F \times (i-1) + 1; \\
& F = F + 1; \\
& f = F + 1;
\end{align*}
\]

\[ f(a, b) = \begin{cases} 
2 & \text{if } a \in \{0, 1\} \text{ and } b \in \{0, 1\} \\
\text{undefined} & \text{else}
\end{cases} \]

\[
\begin{align*}
& 0 \quad \text{if } a = \emptyset \land b = \emptyset \\
& 0 \quad \text{if } a = \emptyset \land b = 1 \\
& 0 \quad \text{if } a \in \{0, 1\} \land b = \emptyset \\
& 1 \quad \text{if } a \in \{0, 1\} \land b = 1 \\
& \text{undefined} \quad \text{otherwise}
\end{align*}
\]

\[ \mu m \{ (a = \emptyset \land b = \emptyset \land m = \emptyset) \} \cup (\ldots) \]