How do we describe general while-loops in terms of μ-revision?

\[\mu n = \varnothing \text{ or } \emptyset (\varnothing, n) \text{ only we have } \]

\[\text{int } n \leftarrow 1; \]

\[\text{while } (n < a) \]

\[n \leftarrow n \times 2; \]

\[\}

For loop

\[\text{int } n \leftarrow 1; \]

\[\text{for } (\text{int } j = 1; j < m; j++) \]

\[n \leftarrow 2 \times n; \]

\[f (0) = g (1) \]

\[f (m+1) = h (m, f (m)) \]

\[g = 1 \circ 0 \circ \emptyset \]

\[h = 2 \circ \emptyset^2 \]

\[f (m) = P E (0 \circ \emptyset \circ \text{prod}(2, \emptyset^2)) \]

of iterations \(m \) is the smallest natural number for which \(f (m) < a \)
\[\mu_n(\lfloor \frac{m}{n} \rfloor < a) \]
\[
\mathcal{L}(\mu_n(\lfloor \frac{m}{n} \rfloor < a)) \]

where
\[
\mathcal{L}(m) = \mathcal{P} \mathcal{E}(\alpha, \emptyset, \text{mult}(\tau_1^3, \tau_2^3))
\]

\[\text{for loop } \]
\[\text{int } x = a; \]
\[\text{while } (x < b) \Rightarrow \]
\[x = x \times x; \]

\[x(\alpha, \emptyset) = \alpha \]
\[x(\alpha, m+1) \neq x(\alpha, m) \]:

\[\mathcal{L}(n_1, \emptyset) = n_1 \]
\[\mathcal{L}(n_1, m+1) = \mathcal{L}(n_1, m) \times \mathcal{L}(n_1, 1) \]
\[\mathcal{L}(n_1, \emptyset) = \mathcal{L}(n_1) = n_1 \]
\[\mathcal{L}(n_1, m+1) = \mathcal{L}(n_1, m, \mathcal{L}(n_1, m)) = \text{prod}(\tau_3^3, \tau_1^3) \]

\[x(\alpha, m) = \mathcal{P} \mathcal{E}(\tau_1^3, \text{prod}(\tau_3^3, \tau_1^3)) \]

we stop at smallest \(m \) for which
\[x(\alpha, m) < b \]

\[\mu_n(\lfloor \frac{m}{n} \rfloor < b) \Rightarrow \#_{\text{of iterations}} \]
Exercise

```c
int a = 1; i = 1;
while (a < b*c) {
    a = a * i;
    i = i + 1;
}
```

```c
int a = 1;
for (int j = 1; j <= m; j++)
    a = a * j;
```

\(a(0) = 1 \)
\(a(m+1) = a(m) \times (m+1) \)

\(f(0) = 1 \)
\(f(m+1) = f(m) \times (m+1) \)

\(q = 1 \)
\(h(n, f(m)) = \text{mult}(\pi_2, 0, \pi_3) \)
\(a(m) = \text{prod}(\pi_1, \text{mult}(\pi_2, a, \pi_2)) \)

```c
int x = s;
while (x < 1 || x > 0)
    x = (a * x + b) % N;
```
Computable = μ-recursive

Intuition based on computing -
Math-wise it is complicated

But math also has basic & reasonably clear
concepts. Main concept of math is set.
There are basic operations: U, N, -
Union, Intersection, Complement

Sets of natural numbers:
Def. A set \(A \) is called decidable if there's an
algorithm that, given a natural number \(n \),
checks whether \(n \in A \)

\[
f(n) = \begin{cases}
1 & \text{if } n \in A \\
0 & \text{if } n \notin A
\end{cases}
\]

\(\chi_A(n) \) characteristic function

Theorem 1, \(\emptyset \) is decidable
Proof: return false

Theorem 2, \(\mathbb{N} \) is decidable
Proof: return true

Th 3, every finite set is decidable
Th 4, if \(A \) and \(B \) are decidable,
\(A \cup B \) is decidable? (\(n \) has to belong at least 1 set)
Th 5, if \(A \) and \(B \) are decidable,
A \& B is decidable (\(n\) has to belong to both sets)

Some sets are not decidable

Def. A set 'A' is recursive enumerable (r.e.)

if there exists an algorithm that

\[\text{eventually lists every element of this set.}\]

or

\[\text{if there exists an algorithm for which every element of this set will be eventually printed}\]

Th 1, \(\emptyset \) is r.e.
Th 2, \(N \) is r.e.
Th 3, Every finite set is r.e.
Th 4, Every decidable set is r.e.

\[
\text{int m=0;}
\text{while (true) }
\text{if (m \in A)}
\text{\{ s.o.p. (m); m; \}}
\text{\}}
\text{\}
\]

Th 5, If \(A, B \) are r.e. then \(A \cup B \) is r.e.