How to translate a while-loop into \(\mu \)-recursion

Example:

```java
int n = 1;
while (n < a)
    n = n * 2;
```

Difference:

- **For-loop:** number of iterations known beforehand
- **While-loop:** number of iterations is unknown

If we knew how many iterations we need, we could describe the computation as a for-loop.

\# of iterations needed will be denoted "blo".

```java
int n = 1;
for (int i = 1; i <= a; i++)
    n = n * 2;
```

To PPL terms:

\(n(0) = 1 \) \(\text{before the for-loop} \)

\(n(m+1) = n(m) \times 2 \) \(\text{inside the loop} \)

\(e_0(0) = 1 \)

\(h = \Pi_2 \times 2 \)

\(n(m) = \text{PE}(0, 0, \text{mul}(\Pi_2, 2)) \)

Denote the result of while-loop as \(w(a) \)

\(\delta_0: w(3) = 4 \quad w(12) = 16 \)

\(w(3) = 2 \)
\(w(a) \) is equal to the result of applying a for-loop when \# of iterations is equal to \(t(a) \)

\[w(a) = n(t(a)) \]
\[w(a) = n(t), \text{ where } t = t(a) \]

While-loop is \# of iterations is the smallest \# at which the condition is no longer satisfied

condition is \(n(t) < a \)

\(t(a) \) is the smallest natural \# \(t \) for which \(n(t) < a \)

\[t(a) = \mu t (\neg (n(t) < a)) \]

\[w(a) = n(t(a)) \]

where \(t(a) = \mu t (\neg (n(t) < a)) \)

or, if we plug in \(t(a) \) into the formula

\[w(a) = n(\mu t (\neg (n(t) < a))) \]

\[\mu \text{Review of the exam.} \]

PR = primitive recursive (obtained by \(\emptyset, \Sigma, \Pi, \delta, \mu \) using \(\emptyset \) and PR)

PR = Primitive Recursion (a function that can be defined using

\[g(n_1, \ldots, n_k), h(n_1, \ldots, n_k, m, f_1, \ldots, f_k) \]

Theorem. Union of r.e. sets is r.e.

\[A \cup B \]

Proof: We run A-alg for 1 hr or B-alg for 2 hr?
Proof: We run A-\text{alg} for 1 hr? Print all
“ “ B-\text{alg} for 1 hr elements of
“ “ A-\text{alg} for 1 hr A \cap B
“ “ B-\text{alg} for 1 hr

Example
A odd #’s
B even #’s
8 #’s per hour

A = 1, 3, 5, 7, 9, 11
B = 2, 4, 6, 8, 10, 12

A \cup B = 1, 3, 5, 2, 4, 6, 7, 9, 11, 8, 10, 12

A \cap B = 1, 3, 5

Question: If n was produced by B-\text{alg} at hrs 5,
when will it be printed by (A \cup B)-\text{alg}?

A = 10

Intersection

The intersection A \cap B of r.e. sets is r.e.

run A-\text{alg} for 1 hr
find common
run B-\text{alg} for 1 hr elements & print then
(run again)
compare longer lists &
print common elements.

If n \in A \cap B
it will be printed by A-\text{alg}

it will be printed by B-\text{alg}

n \in A \cap B

at moment 26 \text{ B it will be produced in the B-list}
At a moment z_{t_a-1} it will be printed in the \mathbf{A}-list.

By moment max (z_{t_b}, z_{t_a-1}) it will appear in both list \mathbf{A} will therefore be printed.

Complement:

If \mathbf{A} and $\mathbf{\neg A}$ are r.e. then \mathbf{A} is decidable.

\[\mathbf{A} \rightarrow \neg \mathbf{A} \]
run \mathbf{A}-alg for $1hr$

\[\mathbf{\neg A} \rightarrow \neg \mathbf{\neg A} \]
run $\mathbf{\neg A}$-alg for $1hr$

and wait until n is printed

if n appears in \mathbf{A}-list: $n \in \mathbf{A}$

if n appears in $\mathbf{\neg A}$-list: $n \notin \mathbf{A}$

Th. No algorithm is possible that, given a program p and data d, checks whether p halts on d.

\[\mathbf{\operatorname{halt-checker}} \]
whenever p, d work

\[\frac{\text{yes if } p \text{ halts on } d}{\text{no if } p \text{ doesn't halt on } d} \]

Proof based on Church-Turing thesis.

Proof. Let's define a code of a Java program.

A Java program is a sequence of ASCII symbols.

\[\text{ASCII for } \]
\[\text{for } \]
\[01101...00...1 \]
- Append 1 in front
- Interpret as natural number (integer)
The integer is called a code of a Java program.

Lemma: There exists an algorithm that, given a natural number c:
- Checks whether c is a code of a Java program.
- If yes, returns the exe file for that function.
The file is denoted f_c.

$$f(n) = \begin{cases} f(n)+1 & \text{if } n \text{ is a code of a Java program and half-checker } (f_{n,n}) = \text{"true"} \\ \emptyset & \text{otherwise} \end{cases}$$

We assume half-checker exists. Then f is computable.

f is computable.

So f is computable by a Java program
let c_f denote the code of the Java program that computes this function f.

$\forall n \ (f_{c_f}(n) = f(n))$ In particular, for
\[n = \chi \text{ we get } f(c_\emptyset)(c_\emptyset) = f(c_\emptyset) \]

Check \(f(c_\emptyset) \) definition:

\[f(c_\emptyset)(c_\emptyset) = f(c_\emptyset(c_\emptyset)) + 1 \]

\[\emptyset = 1 \]

\[\text{Contradiction!} \]

Homework part 1: Write prove that no half-checker is possible.

Part 2: If \(n \) appears at moment 13 in \(A_{\text{alg}} \) when will the \((A\cup B)\)-alg print it?

Part 3: If \(n \) appears at moment 12 in \(A_{\text{alg}} \) and at moment 11 at \(B_{\text{alg}} \), when will \((A\cup B)\)-alg print it?

Part 4: Check web site.