\[PA \]

relative to an oracle classes

\[\text{NPA} \]

\[\text{NP} \subseteq \text{P}^{\text{SAT}} \]

\[\text{P} \neq \text{NP} \quad \text{PA} \neq \text{NPA} \]

There are examples:

1) \(A_1 : p^A \neq \text{NP}^A \)

2) \(A_2 : p^A = \text{NP}^A \)

\(\text{co-Simple} \quad A_2 = \text{PSPACE} \)

\(\Sigma_2^P \quad \exists x \forall x \exists y \exists x = \{x, y, z \} \)

\(\Pi_2^P \quad \forall x \exists y \exists x = \{x, y, z \} \)

\(\Sigma_5^P \quad \exists x \forall x \exists y \exists z \forall x \exists y \exists z = \{x, y, z, w \} \)

\[\exists x, \forall x \exists x, \forall x \exists x \quad \text{win}(\ldots) \]

\[\exists x, \text{win}(\ldots) \]

\[\exists x, \forall x \exists x, \text{win}(\ldots) \]

\[\exists x, \forall x \exists x, \ldots \]

\# of quant. \leq \text{P}(n)

\[\text{PSPACE} = \text{P}^\text{poly} \quad \text{time}. \]

\[\text{PSPACE} = \exists x_i, \forall x_{i+1} \quad \text{poly} \quad \# \text{ of quant.} \]

\[\text{NP} = \bigcup \{ L \mid \exists C \text{ poly}, \forall x, y \in \{0,1\}^* \quad (x,y) \in L \} \]
\[P(x) \equiv \exists y \in \Sigma^* (x, y) \in \Sigma_1 \text{P} \]

\[P \equiv \Sigma_0 \text{P} \]
\[\Sigma_0 \text{P} \subset \Sigma_1 \text{P} \]
\[\Sigma_1 \text{P} \subset \Pi_2 \text{P} \]
\[\Pi_2 \text{P} \]

\[\Delta_1 \text{P} = \Sigma_1 \text{P} \cap \Pi_1 \text{P} \]
\[\Delta_2 \text{P} = \Sigma_2 \text{P} \cap \Pi_2 \text{P} \]

Kolmogorov Complexity of a String

\[K(x) = \min \{ \text{len}(p) : \text{program } p \text{ prints } x \} \]

If \[K(x) \leq \text{len}(x) \], \(x \) is random.

If \[K(x) < \text{len}(x) \], \(x \) is not random.

\[K(x) \] is not computable.
two thousand seventeen (3)

Smallest integer that cannot be represented by fewer than twenty words

Proof by contradiction

Assume \(k(w) \) is computable

Let \(L \) be the length of the program that computes \(k(x) \).

\[
\zeta \left\{ \begin{array}{l}
\text{int } \ i = 0; \\
\text{while } (k(i)) < 2 \land L+100 \\
\quad i++;
\end{array} \right.
\]

It prints smallest integer \(x \) for which

\(k(x) > 2 \land L+100 \)

\(L(z) < L+100 \)

Test 3.

3- coloring
Probabilistic algorithm: Monte Carlo algorithm.

we want to find

$$\int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(x_1, \ldots, x_n) \, dx_1 \cdots dx_n$$

Algorithm: Pick $x_i^{(k)} \sim U[a_i, b_i], 1 \leq i \leq n$

$$I = \frac{1}{K} \sum_{k=1}^{K} f(x_1^{(k)}, \ldots, x_n^{(k)})$$

Probability algorithm.

Given: programs $p(x)$ and $p_0(x)$.

Wanted: check whether $\forall x (p(x) = p_0(x))$

Algorithm: Select a random number $\alpha \sim U[a, b]$ and check whether
\[P(x) \equiv P_0(x) \]
\[\text{if } f
eq 0 \]
\[\forall x (f(x) = f_0(x)) \]
\[\text{if } = \]
\[\forall x (f(x) = f_0(x)) \]

Lobachevsky space

\[V(\tau) \sim e^{\tau^2} \]

Processor size \(\Delta V \)

\[\frac{\Delta V}{\Delta \nu} \sim e^{\frac{\tau^2}{\nu}} = Z_n \]

\[T = \frac{\tau^2}{C} = O(n) \]

\[\alpha R = n \hbar^2 \]

\[R = \frac{n \hbar^2}{2} \]

Pseudo-BH

\[\text{Hypothesis: every even element particle is an entrance to an almost BH to another world} \]

\[P(\nu, \cdots, \nu) \]
P(P(V_1, ..., V_n))

You pick a random bits X_1, ..., X_n and check whether P(X_1, ..., X_n) is true

true

puzzle

false

finish

Launch time machine to implement a very low probability event with prob. p_0 << 1

-Z-CNFS

\[X_1 + X_2 + X_3 = 1 \]
\[X_1 - X_2 - X_3 = 0 \]
\[2X_1 + X_2 + X_3 = 2 \]

\[X_1 = 1 - X_2 - X_3 \]
\[1 - X_2 - X_3 - X_2 - X_3 = \emptyset \]
\[2(1 - X_2 - X_3) + 2X_3 = 2 \]

\[2 - 2X_2 - 2X_3 + 2X_2 + X_3 = 2 \]

\[2 - X_3 = 2 \]

\[X_3 = \emptyset \]