Solution to Homework 41

Homework 41. On the example of the negation function \(f(x) = \neg x \), trace, step by step, how Deutsch-Josza algorithm will conclude that \(f(0) \neq f(1) \) while applying \(f \) only once.

Solution. The Deutsch-Josza algorithm consists of the following steps:

- we start with the state \(|0,1\rangle = |0\rangle \otimes |1\rangle\);
- we apply the Hadamard transformation \(H \) to both bits, i.e., the transformation for which
 \[H(|0\rangle) = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle; \quad H(|1\rangle) = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle; \]
- then, we apply the function \(f \), i.e., apply the transformation
 \[f(|x, y\rangle) = |x, y \oplus f(x)\rangle, \]
 where \(a \oplus b \) means addition modulo 2 or, equivalently, exclusive “or”:

 \[0 \oplus 0 = 0; \quad 0 \oplus 1 = 1 \oplus 0 = 1; \quad 1 \oplus 1 = 0; \]
- after that, we again apply the Hadamard transformation to both bits;
- finally, we measure the first bit of the resulting 2-bit state:
 - if the first bit is 0, we conclude that the function \(f \) is constant;
 - if the first bit is 1, we conclude that the function \(f \) is not constant.

According to the handout, after applying the Hadamard transformation \(H \) to both bits of the state \(|0,1\rangle = |0\rangle \otimes |1\rangle\), we get the state

\[H(|0\rangle) \otimes H(|1\rangle) = \frac{1}{2}|0,0\rangle - \frac{1}{2}|0,1\rangle + \frac{1}{2}|1,0\rangle - \frac{1}{2}|1,1\rangle. \quad (1) \]

When we apply the function \(f \), we get the following:

\[f(|0,0\rangle) = |0,1\rangle, \quad f(|0,1\rangle) = |0,0\rangle, \quad f(|1,0\rangle) = |1,0\rangle, \quad f(|1,1\rangle) = |1,1\rangle. \]

Thus, the state \((1)\) gets transformed into

\[f(H(|0\rangle) \otimes H(|1\rangle)) = \frac{1}{2}|0,1\rangle - \frac{1}{2}|0,0\rangle + \frac{1}{2}|1,0\rangle - \frac{1}{2}|1,1\rangle = \]

1
\[-\frac{1}{2}|0\rangle \otimes |0\rangle + \frac{1}{2}|0\rangle \otimes |1\rangle + \frac{1}{2}|1\rangle \otimes |0\rangle - \frac{1}{2}|1\rangle \otimes |1\rangle.\]

The first two terms have a common factor $|0\rangle$, the third and the fourth one have a common factor $|1\rangle$, so we have

\[f(H(|0\rangle) \otimes H(|1\rangle)) = -\frac{1}{\sqrt{2}}|0\rangle \otimes \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right) + \frac{1}{\sqrt{2}}|1\rangle \otimes \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right).\]

This expression can be equivalently reformulated as

\[f(H(|0\rangle) \otimes H(|1\rangle)) = -\left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right).\]

For both bits, what we have is $H|1\rangle$:

\[f(H(|0\rangle) \otimes H(|1\rangle)) = -H(|1\rangle) \otimes H(|1\rangle).\]

It is known that when we apply the Hadamard transformation twice, we get back the original state. In particular, $H(H(|1\rangle)) = |1\rangle$. Thus, when we apply the Hadamard transformation to both bits once again, we get the state

\[-|1\rangle \otimes |1\rangle.\]

Measuring the value of the first bit, we get the value 1 with probability $| -1 |^2 = 1$. Thus, we can indeed conclude that $f(0) \neq f(1)$ – and we called the function f only once.