Theory of Computations,
Test 1 for the course
CS 5315, Spring 2020

Name: ____________________________

Up to 5 handwritten pages are allowed.

1. Translate, step-by-step, the following for-loop into a primitive recursive expression:

```c
int x = p + q;
for (int i = 1; i <= r; i++)
    {x = x * q;}
```

You can use `add(., .)` (sum) and `mult(., .)` (product) in this expression. What is the value of this function when `p = 1`, `q = 2`, and `r = 2`?

Solution:

In mathematical terms:

\[
X(p, q, 0) = p + q
\]

\[
X(p, q, m + 1) = X(p, q, m) \times q
\]

The general expression for \(k = 2 \) is:

\[
f(n_1, n_2, 0) = g(n_1, n_2)
\]

\[
f(n_1, n_2, m + 1) = h(n_1, n_2, m, f(n_1, n_2, m))
\]

In this case:

\[
f(n_1, n_2, 0) = n_1 + n_2
\]

\[
f(n_1, n_2, m + 1) = f(n_1, n_2, m) \times n_2
\]

Thus we have:

\[
g = n_1 + n_2 = \text{sum}(T_1^2, T_2^2)
\]

\[
h = \text{mult}(T_1^4, T_2^4)
\]

\[
\therefore X(p, q, m) = PR[\text{sum}(T_1^0, T_2^0), \text{mult}(T_1^4, T_2^4)]
\]

```
4 8
p
2
```

```
1 2
q
```

```
4 2
x
```

The value for \(p = 1 \), \(q = 2 \), and \(r = 2 \) is 12.

```
X = 12
```
2. Translate, step-by-step, the following for-loop into a primitive recursive expression:

```
int z = p + q;
for(int i = 1; i <= r; i++)
  for(int j = 1; j <= s; j++)
    { z = z * q; }
```

You can use `add(., .)` and `mult(., .)` in this expression.
What is the value of this function when p = q = r = s = 2?

Solve:

First we breakdown the nested loop

```
int z = p + q;
for(int i = 1; i <= r; i++)
  z = aux(z, q, s);
```

```
int z = z;
for(int j = 1; j <= s; j++)
  z = z * q;
```

In general, for \(k = 2 \)

\[
\begin{align*}
 f(n_1, n_2, 0) &= g(n_1, n_2) \\
 f(n_1, n_2, m+1) &= h(n_1, n_2, m, f(n_1, n_2, m))
\end{align*}
\]

```
\[
\begin{align*}
  Z(p, q, s, 0) &= p + q \\
  Z(p, q, s, m+1) &= aux(z(p, q, s, m), q, s)
\end{align*}
\]

In general, for \( k = 3 \)

\[
\begin{align*}
  f(n_1, n_2, n_3, 0) &= g(n_1, n_2, n_3) \\
  f(n_1, n_2, n_3, m+1) &= h(n_1, n_2, n_3, m, f(n_1, n_2, n_3, m))
\end{align*}
\]

```
\[
\begin{align*}
 j &= \Pi_1^3 + \Pi_2^3 \\
 h &= aux(\Pi_5^5, \Pi_2^5, \Pi_3^5) \\
 Z &= aux(\Pi_2^5, \Pi_5^5, \Pi_3^5)
\end{align*}
\]

In general, for \(k = 4 \)

\[
\begin{align*}
 f(n_1, n_2, n_3, n_4, 0) &= g(n_1, n_2, n_3, n_4) \\
 f(n_1, n_2, n_3, n_4, m+1) &= h(n_1, n_2, n_3, n_4, m, f(n_1, n_2, n_3, n_4, m))
\end{align*}
\]

```
\[
\begin{align*}
  j &= \Pi_1^3 + \Pi_2^3 \\
  h &= aux(\Pi_5^5, \Pi_2^5, \Pi_3^5) \\
  Z &= aux(\Pi_2^5, \Pi_5^5, \Pi_3^5)
\end{align*}
\]

In general, for \( k = 5 \)

\[
\begin{align*}
  f(n_1, n_2, n_3, n_4, n_5, 0) &= g(n_1, n_2, n_3, n_4, n_5) \\
  f(n_1, n_2, n_3, n_4, n_5, m+1) &= h(n_1, n_2, n_3, n_4, n_5, m, f(n_1, n_2, n_3, n_4, n_5, m))
\end{align*}
\]

```
\[
\begin{align*}
 j &= \Pi_1^3 + \Pi_2^3 \\
 h &= aux(\Pi_5^5, \Pi_2^5, \Pi_3^5) \\
 Z &= aux(\Pi_2^5, \Pi_5^5, \Pi_3^5)
\end{align*}
\]
\[
Z = PR\left[\text{Sum}(\Pi_1^3, \Pi_2^3) \times \left(PR\left[\Pi_1^2, \text{mul}(\Pi_4^4, \Pi_2^4)\right] \right) \left(\Pi_5^5, \Pi_2^5, \Pi_3^5 \right)\right]
\]

\[
\begin{array}{cccc}
2 & 2 & 2 & 2 \\
P & q & r & s \\
\end{array}
\]

\[
\begin{array}{cccc}
2 & 3 & 1 & 3 \\
& 3 & 1 & \\
& & & \\
& & & \\
\end{array}
\]

\[Z(2,2,2,2) = 64\]

- \(j = 0\), \(Z = 2+2 = 4\)
- \(j = 1\), \(Z = 4\times2 = 8\)
- \(j = 1\), \(Z = 8\times2 = 16\)
- \(j = 2\), \(Z = 16\times2 = 32\)
- \(j = 2\), \(Z = 32\times2 = 64\)
3. Translate, step-by-step, the following primitive recursive function into a for-loop:

\[f = \sigma(PR(add(x^2, \sigma(0)), add(x^4, x^3))). \]

For this function \(f \), what is the value \(f(2, 0, 1) \)?

Let \(F = PR[add(x^2, \sigma(0)), add(x^4, x^3)] \)

\[f = 6 \cdot F \]

\(\Rightarrow \) The general formula.

\[
\begin{align*}
f(n, n_2, \ldots, n_k, 0) &= g(n, n_2, \ldots, n_k) \\
f(n, n_2, \ldots, n_k, m+1) &= h(n, n_2, \ldots, n_k, m, f(n, n_2, \ldots, n_k, m)) \\
\end{align*}
\]

\(\text{int } f = g(n, \ldots, n_k) \)

\(\text{for (int } i = 1; \ i \leq m; \ i++) \)

\(\text{if } F = h(n, \ldots, n_k, m, f) \) \{

\[\text{int } F = n + 1 \]

\(\text{for (int } i = 1; \ i \leq m; \ i++) \)

\(F = F + (i - 1) \) \}

\(\text{int } F = F + 1 \)

\[F(2, 0, 0) = 0 + 1 = 1 \\
F(2, 0, 1) = 2 + 0 = 2 \\
F(2, 0, 1) = F(2, 0, 1) + 1 = 2 + 1 = 3 \\
\]
4-5. Prove, from scratch, that the function \(f(p, q) = p \% (q / p) \) is primitive recursive. Start with the definitions of a primitive recursive function, and use only this definition in your proof -- do not simply mention results that we proved in class, prove them.

Sln: Definition: A function is called primitive recursive (PR) if it can be obtained from 0, 1, and \(\pi_1^1 \) by using composition (\(\circ \)) and primitive recursion (PR).

To prove \(f(p, q) = p \% (q / p) \) is primitive recursive we have to prove that:

\(\Rightarrow \) Remainder (\(\% \)) is PR
\(\Rightarrow \) Division (\(/ \)) is PR

\(\Rightarrow \) Remainder is PR.

\[
\begin{align*}
\text{rem}(0, 0) & = 0 \\
\text{rem}(a, m+1) & = \begin{cases}
\text{rem}(a, m) + 1 & \text{if } \text{rem}(a, m) + 1 < a \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

\[
\begin{align*}
f(n, 0) & = g(n) \\
f(n, m+1) & = h(n, m, f(n, m)) \\
f(n, 1) & = 0 \\
f(n, m+1) & = \begin{cases}
\text{if } f(n, m) < n, \text{ then } f(n, m) + 1 & \text{else } 0
\end{cases}
\end{align*}
\]

Thus,

\[
\text{rem} = \text{PR}(0, \text{if } 6 \bigcup 3 < \bigcup 1 \text{ then } 6 \bigcup 3 \text{ else } 0)
\]

Thus remainder will be PR if:

\(\text{if } p(a) \text{ then } f(a) \text{ else } g(a) \) is PR

Sum is PR < is PR.

\(\Rightarrow \) If \(p(a) \) then \(f(a) \) else \(g(a) \) is PR:

Mathematically:

\[
p(a), f(a) + (1 - p(a)) \times g(a)
\]

Proof:

\[
\begin{align*}
\text{if } p(a) = 1 & \text{ then } f(a) \\
\text{if } p(a) = 0 & \text{ then } g(a)
\end{align*}
\]

Thus we have \(\text{if } p(a) \text{ then } f(a) \text{ else } g(a) \) is PR provided \(p(a), f(a) \) and \(g(a) \) are PR, sum is PR, subtraction is PR, product is PR.
⇒ \text{Sum is P.R.}\hspace{1cm} a+b = a+1+1 \ldots +1 \hspace{1cm} b\text{-times}\hspace{1cm} \text{int sum=0}\hspace{1cm} \text{for} \hspace{0.1cm} (i=1; i < b; i++)\hspace{1cm} \text{? sum=sum+i} \hspace{1cm} \text{? sum=PR(TT', 0'')}\hspace{1cm} \text{Thus sum=PR(TT', 0')}\hspace{1cm} \text{Prev(n) is P.R.}\hspace{1cm} \text{prev(0) = 0}\hspace{1cm} \text{prev(m+1) = m}\hspace{1cm} f(0) = 0\hspace{1cm} f(m+1) = h(m, f(m))\hspace{1cm} f(0) = 0\hspace{1cm} f(m+1) = h(m, f(m))\hspace{1cm} \text{Thus prev(n) = PR(0, TT')}\hspace{1cm} \therefore \text{Subtraction is P.R.}\hspace{1cm} a-b = a-1-1 \ldots -1 \hspace{1cm} b\text{-times}\hspace{1cm} \text{int sub=0}\hspace{1cm} \text{for} \hspace{0.1cm} (i=1; i < b; i++)\hspace{1cm} \text{? sub=prev(sub)} \hspace{1cm} \text{? sub(sub, 0) = 0}\hspace{1cm} \text{sub(m+1) = sub(m, f(m))}\hspace{1cm} f(0) = 0\hspace{1cm} f(m+1) = h(m, f(m))\hspace{1cm} f(0) = 0\hspace{1cm} f(m+1) = h(m, f(m))\hspace{1cm} \text{Thus sub(sub, 0) = PR(TT', prev(TT'''))}\hspace{1cm} \text{Thus we have Subtraction is P.R. provided prev(n) is P.R.}\hspace{1cm} \Rightarrow \text{< is P.R.}\hspace{1cm} \therefore a < b \iff a-b = 0 \iff \text{eq0(a-b)}\hspace{1cm} \text{to prove < is P.R. we have to prove that eq0 is P.R.}\hspace{1cm} \Rightarrow \text{eq0 is P.R.}\hspace{1cm} \text{eq0(0) = 1}\hspace{1cm} \text{eq0(1) = 0}\hspace{1cm} f(0) = 1\hspace{1cm} f(m+1) = 0\hspace{1cm} \text{eq0 = PR(0, 0, 0)}\hspace{1cm} \Rightarrow \text{Next page for 2'}
2) Division is p.v.:

\[
\text{div}(a, 0) = 0
\]
\[
\text{div}(a, m+1) = \begin{cases}
\text{div}(a, m) + 1 & \text{if } \text{rem}(a, m+1) = 0 \\
\text{div}(a, m) & \text{otherwise}
\end{cases}
\]

\[
f(n, 0) = 0
\]
\[
f(n, m+1) = \begin{cases}
q & \text{if } \text{rem}(n, m+1) = 0 \text{ then } f(n, m) + 1 \\
\text{else } f(n, m)
\end{cases}
\]

Thus \(\text{div} = \text{PR}(0, q, \text{rem}(a, m+1) = 0 \text{ then } 6o \Pi^3_3 \text{ else } \Pi^3_3) \)

Thus division is p.v. provided remainder is p.v. (which we have already proved), \(n \leq q \leq a \) then \(f(a) \) else \(q(a) \) is p.v. (which we have also already proved), and \(= \) is p.v.

\[= \] is p.v.:

\[a = b \iff (a \leq b) \& f(b \leq a)\]

To prove = is p.v. we have to prove \& is p.v. and \(\leq \) is p.v.

\[\Rightarrow \] \& is p.v.:

\& is product so it is p.v.

\[\Rightarrow \] \(\leq \) is p.v.:

\[a \leq b \iff a \div b = 0 \iff \emptyset o(a \div b)\]

Thus \(\leq \) is p.v.

Hence we can say that \(p \div (a/p) \) is p.v.
6. Prove that the following function $f(p, q)$ is μ-recursive: $f(p, q) = \frac{p}{q}$ when each of the values p and q is either 1 or 2, and $f(p, q)$ is undefined for other pairs (p, q).

$$f(p, q) = \begin{cases} p \div q \div (p \div q) & \text{if } p \in \{1, 2\} \text{ and } q \in \{1, 2\} \\ \text{Undefined otherwise} \end{cases}$$

I don't think this function would be defined for $P=2$ and $q=1$ as we would have $f(2, 1) = 2 \div (1/2)$ for integer division $(1/2)$ in 0 and $2 \div 0$ is undefined. Assuming it is $2 \div 0.5$ and thus equal to 0 the solution would be as given below; however, we cannot have non-natural numbers like 0.5.

$$P \div (2/q) = \begin{cases} 0 & \text{if } p = 1 \text{ and } q = 1 \\ 1 & \text{if } p = 2 \text{ and } q = 1 \\ 0 & \text{if } p = 2 \text{ and } q = 2 \\ 1 & \text{if } p = 1 \text{ and } q = 2 \\ 0 & \text{if } p = 1 \text{ and } q = 2 \end{cases}$$

$$\mu m \left[(p = 1 \land q = 1 \land m = 0) \land (p = 2 \land q = 2 \land m = 0) \land (p = 1 \land q = 2 \land m = 1) \lor (p = 2 \land q = 2 \land m = 1) \right]$$

$P \div (2/q)$ calculation:

- $p=1, q=1 \rightarrow \div 1\div(1/1) = 1 \div 1 = 0$
- $p=2, q=1 \rightarrow 2 \div (1/2) = 2 \div 0 \rightarrow$ *This should be undefined for integer division, not sure how this function would be defined.* If we assume $2/2 = 0.5 + 2 \mod 0.5 = 0$, then the result would be as shown above.
- $p=1, q=2 \rightarrow 1 \div (2/1) = 1 \div 2 = 1$
- $p=2, q=2 \rightarrow 2 \div (2/2) = 2 \div 1 = 0$
7. Translate the following μ-recursive expression into a while-loop:
 \(f(a, b) = \mu m.(m \times a = b) \).

 For this function \(f \), what is the value of \(f(2, 4) \)? \(f(2, 5) \)?

 Solution:

   ```
   int m = 0
   while ( !(m * a == b) )
   
   m++;
   ```

 \(\Rightarrow f(2, 4) \)?

 \[m \begin{array}{c} a \ b \\ 0 \times 2 = 4 \times \text{Not Satisfied} \\ 1 \times 2 = 4 \times \text{Not Satisfied} \\ 2 \times 2 = 4 \times \checkmark \text{Satisfied (exit loop)} \end{array} \]

 Thus \(f(2, 4) = 2 \)

 \(\Rightarrow f(2, 5) \)?

 \[m \begin{array}{c} a \ b \\ 0 \times 2 = 5 \times \text{Not Satisfied} \\ 1 \times 2 = 5 \times \text{Not Satisfied} \\ 2 \times 2 = 5 \times \text{Not Satisfied} \\ 3 \times 2 = 5 \times \text{Not Satisfied} \end{array} \]

 (Loop runs continuously)

 \(f(2, 5) \) is undefined

 This loop never ends as no integer value of \(m \) will satisfy the given condition thus \(f(2, 5) \) is undefined. This while loop will never end.
8-9. Suppose that someone comes up with a new proof that not every computable function is primitive recursive, by providing a new example of a function \(N(n) \) which is computable but not primitive recursive. What if, in addition to 0, \(\pi^k_i \), and \(\sigma \), we also allow this new function \(N(n) \) in our constructions? Let us call functions that can be obtained from 0, \(\pi^k_i \), \(\sigma \), and \(N(n) \) by using composition and primitive recursion \(N\text{-}primitive \text{ recursive} \) functions. Will then every computable function be \(N\text{-}primitive \text{ recursive} \)? Prove that your answer is correct.

\textbf{S\textsc{ol}n:} \\
Before we start the proof we need to describe the following two things:

\underline{Definition of a \(N\text{-}pr \) code:} we have stated that a \(N\text{-}pr \) function can be obtained from 0, 6, \(\pi^k_i \), and \(N(n) \) using composition (1) and primitive recursion (2) and every \(N\text{-}pr \) function can be described by an expression containing (1), 0, 6, \(\pi^k_i \), and \(N(n) \): Now to define a \(N\text{-}pr \) code we start with this expression and then assign an integer number to this expression in following way:

1. \(6 \rightarrow \backslash \sigma \text{ma} \)
 \(\pi^k_i \rightarrow \backslash \nu \text{pu} \text{nu} \)
 \(0 \rightarrow \backslash \text{circ} \)

2. Now we use ASCII to transform each symbol into 0's and 1's
 \(\text{eg:} \ P \rightarrow 01000000 \)
 \(1 \rightarrow 01010000 \)

3. Now we place 1 in front (so that we can re-construct the string back)

4. Finally interpret this binary string as an integer and this integer will be the \(N\text{-}pr \) code for the corresponding expression.
Lemma (w/o proof): there exists an algorithm that given a natural number c, checks whether c is a N-pr-code of some N-pr expression and if yes returns a java program for computing the corresponding N-pr expression. The java program will be denoted by f_c.

How this algorithm works:
- convert the natural number to binary string
- strip off the first 1
- check if each byte is ASCII character
- check if all back symbols are correct
- compiles to get f_c

⇒ Main part of the proof:
Let us define the following function
$$f(c) = egin{cases} f_c(c) + 1 & \text{if } c \text{ is a valid N-pr-code} \\ 0 & \text{otherwise} \end{cases}$$

How can we compute $f(c)$?

To prove that this function $f(c)$ is not N-pr we will use proof by contradiction.

Let us assume that $f(c)$ is N-pr and let us deduce a contradiction from this assumption.

Since $f(c)$ is N-pr it has a N-pr code, let us denote this code by c_0.
for this N-pr code the algorithm from lemma will produce a Java program f_{c_0}

$$\forall c \left(f_{c_0}(c) = f(c) \right)$$

In particular for $c = c_0$

$$f_{c_0}(c_0) = f(c_0) = 0$$

On the other hand, since c_0 is a valid N-pr code from the definition of function $f(c)$, we have

$$f(c) = f_{c_0}(c) + 1$$

From (0) and (11) we have

$$f_{c_0}(c_0) = f(c_0) + 1$$

$$0 = 1$$

Thus we have a contradiction which means that our assumption that the function is N-pr was wrong hence we conclude that $f(c)$ is not N-pr.
10. Design Turing machines for computing \(n + 1 \) in unary and in binary codes.

⇒ In Unary:

We have

\[\begin{array}{c}
\text{Start} \\
\text{Step 1} \\
\text{Step 2} \\
\text{Step 3} \\
\text{Step 4} \\
\text{Step 5} \\
\end{array} \]

We want

\[\begin{array}{c}
\text{Start} \\
\text{Working} \\
\text{Working} \\
\text{Working} \\
\text{Return} \\
\text{Return} \\
\end{array} \]

Directives:

\[\begin{array}{c}
\text{Start} \# \rightarrow \text{working, R} \\
\text{working, } \# \rightarrow \text{R} \\
\text{working, } \# \rightarrow 1, \text{Return, L} \\
\text{Return, } 1 \rightarrow \text{L} \\
\text{Return, } \# \rightarrow \text{halt} \\
\end{array} \]

⇒ In Binary:

Motivation: In binary addition of 1 means we move from least significant bit to most significant bit changing all the 1’s to 0’s until we get a 0 and we change that 0 to 1 and return.

Also in turing machine the least significant bit is stored first i.e., numbers are stored in reverse order.

\[\begin{array}{c}
\text{Start} \\
\text{Step 1} \\
\text{Step 2} \\
\text{Step 3} \\
\text{Step 4} \\
\text{Step 5} \\
\text{Step 6} \\
\text{Step 7} \\
\text{Step 8} \\
\text{Step 9} \\
\text{Step 10} \\
\text{Step 11} \\
\text{Step 12} \\
\end{array} \]

We have

\[\begin{array}{c}
\text{Start} \\
\text{Working} \\
\text{Working} \\
\text{Working} \\
\text{Return} \\
\text{Return} \\
\end{array} \]

We want

\[\begin{array}{c}
\text{Start} \\
\text{Working} \\
\text{Working} \\
\text{Working} \\
\text{Return} \\
\text{Return} \\
\end{array} \]

Directives:

\[\begin{array}{c}
\text{Start, } \# \rightarrow \text{R, Working} \\
\text{working, } \# \rightarrow 0, \text{ R} \\
\text{working, } 0 \rightarrow 1, \text{ Return, L} \\
\text{Return, } 0/1 \rightarrow \text{L} \\
\text{Return, } \# \rightarrow \text{halt} \\
\end{array} \]