Solution to Problem 14

Problem. Sketch an example of a Turing machine for implementing primitive recursion (i.e., a for-loop), the way we did it in class, on the example of the following simple for-loop

```java
sum = a;
for(int i = 1; i <= b; i++)
    {sum = sum + a;}
```

No details are required, but any details will give you extra credit.

Solution. In mathematical terms, the above for-loop takes the following form:

\[
\begin{align*}
 sum(a, 0) &= a; \\
 sum(a, m+1) &= sum(a, m) + a.
\end{align*}
\]

After we rename the function \(sum \) into \(h \) and the parameter \(a \) into \(n_1 \), we get the standard form:

\[
\begin{align*}
 h(n_1, 0) &= n_1; \\
 h(n_1, m+1) &= h(n_1, m) + n_1.
\end{align*}
\]

In this standard form, we have \(f(n_1) = n_1 \), i.e., \(f = \pi_1^1 \), and \(g(n_1, m, h) = h + n_1 \), i.e., \(g = add(\pi_3^3, \pi_1^3) \).

Let us follow the general scheme for computing primitive recursion. Suppose that we have Turing machines computing the functions \(f(n_1) = n_1 \) and \(g(n_1, m, h) = h + n_1 \). Let us show how to build a Turing machine that compute the desired function \(h = PR(f, g) \). We start with the state

```
- n_1 - x - ... start
```

and we want to end up in the state

```
- h(n_1, x) - ... halt
```

This can be done as follows. First, we copy \(x \), add 0, then copy the number \(n_1 \), and move the head into the cell right before the second copy of \(n_1 \):

```
- n_1 - x - x - 0 - n_1 - ...
```
Then, we apply the Turing machine f. Since a Turing machine never goes beyond the cell where it starts, it will compute the value

$$h(n_1, 0) = f(n_1) = n_1,$$

so we will have the following state of the tape:

\[
\begin{array}{cccccccc}
- & n_1 & - & x & - & x & - & 0 & - & h(n_1, 0) & - & \ldots
\end{array}
\]

Now, we copy n_1 and 0 before h, and get

\[
\begin{array}{cccccccc}
- & n_1 & - & x & - & x & - & 0 & - & n_1 & - & 0 & - & h(n_1, 0) & - & \ldots
\end{array}
\]

Then, we apply the Turing machine for computing the function g, and get $h(n_1, 1) = g(n_1, 0, h(0))$. So, the tape has the form:

\[
\begin{array}{cccccccc}
- & n_1 & - & x & - & x & - & 0 & - & h(n_1, 1) & - & \ldots
\end{array}
\]

After that, we decrease the second copy of x by 1, increase 0 by 1, and get the following:

\[
\begin{array}{cccccccc}
- & n_1 & - & x & - & x & - & 0 & - & 1 & - & h(n_1, 1) & - & \ldots
\end{array}
\]

and we repeat a similar procedure.

In general, for each $m \leq x$, we get the following state of the tape:

\[
\begin{array}{cccccccc}
- & n_1 & - & x & - & x & - & 0 & - & h(n_1, m) & - & \ldots
\end{array}
\]

Then, we copy n_1 and m before h, and get

\[
\begin{array}{cccccccc}
- & n_1 & - & x & - & x & - & 0 & - & n_1 & - & m & - & h(n_1, m) & - & \ldots
\end{array}
\]

Now, we apply the Turing machine for computing the function g, and get

$$h(n_1, m + 1) = h(n_1, m, h(n_1, m)).$$

So, the tape has the form:

\[
\begin{array}{cccccccc}
- & n_1 & - & x & - & x & - & 0 & - & h(n_1, m + 1) & - & \ldots
\end{array}
\]

Then, we check whether $x - m = 0$. If $x - m > 0$, we decrease $x - m$ by 1, increase m by 1, and get the following:
and we repeat a similar procedure.

Once we get \(x - m = 0 \) i.e., \(m = x \), the state of the tape takes the form

\[
- n_1 - x - x - (m + 1) - m + 1 - h(n_1, m + 1) - \ldots
\]

Here, we have \(k + 4 = 5 \) numbers:

- the number \(n_1 \), and
- four numbers \(x, 0, x \), and \(h(n_1, x) \).

The desired value \(h(n_1, x) \) is 5-th out of 5, so we can get it by applying the Turing machine computing the corresponding projection \(\pi_5^5 \):

\[
- h(n_1, x) - \ldots \text{ halt}
\]

This is exactly what we wanted.

In this construction, we use composition, adding 1, subtracting 1, copying, and projection. We know how to do all this on a Turing machine, so indeed we can thus build a Turing machine for computing the function \(PR(f, g) \).