Solution to Problem 4

Problem. Write a Java program corresponding to the following primitive recursive function $f = \sigma(PR(\pi_2^2, \sigma(add(\pi_4^1, \pi_4^2, \pi_4^3))))$. For this function f, what is the value of $f(0, 2, 2)$?

Solution. In general, the expression $h = PR(f, g)$ corresponding to functions $f(n_1, \ldots, n_k)$ and $g(n_1, \ldots, n_k, m, h)$ defines a function of $k + 1$ variables:

$$h(n_1, \ldots, n_k, 0) = f(n_1, \ldots, n_k);$$

$$h(n_1, \ldots, n_k, m + 1) = g(n_1, \ldots, n_k, m, h(n_1, \ldots, n_k, m)).$$

In our cases, $f = \pi_2^2$ is a function of 2 variables, so $k = 2$. For $k = 2$, the general formulas for primitive recursion take the following form:

$$h(n_1, n_2, 0) = f(n_1, n_2);$$

$$h(n_1, n_2, m + 1) = g(n_1, n_2, m, h(n_1, n_2, m)).$$

Here, $f(n_1, n_2) = \pi_2^2(n_1, n_2) = n_2$ and

$$g(n_1, n_2, m, h) = \sigma(add(\pi_4^1(n_1, n_2, m, h), \pi_4^2(n_1, n_2, m, h), \pi_4^3(n_1, n_2, m, h))) = \sigma(add(n_1, n_2, m)) = n_1 + n_2 + m + 1.$$

Thus, we have

$$h(n_1, n_2, 0) = n_2;$$

$$h(n_1, n_2, m + 1) = n_1 + n_2 + m + 1.$$

Primitive recursion is the description of a for-loop. The first line of the primitive recursion describes what is happening before the loop. In Java, the corresponding statement takes the following form:

```java
int h = n2;
```

The second line of the primitive recursion describes what happens when we get from the iteration number $i - 1 = m$ to iteration number $i = m + 1$. So, we take

```java
h = n1 + n2 + i;
```

The whole code for the PR part takes the form:
int h = n2;
for(int i = 1; i <= m; i++)
{h = n1 + n2 + i;}

The desired function \(f \) is obtained from the \(PR \) expression by applying \(\sigma \), i.e., by adding 1. Thus, we have the following Java program for computing the function \(f \):

```java
int h = n2;
for(int i = 1; i <= m; i++)
{h = n1 + n2 + i;}
h++;
```

Let us trace this Java program on the example of \(n1 = 0, n2 = 2, \) and \(m = 2 \).

- We start with assigning, to the variable \(h \), the value \(n1 = 0 \).
- Then, we go into the for-loop, and define the new variable \(i \) whose value is 1.
- Here, \(i = 1 \leq m = 2 \), so we go inside the loop, and assign, to the variable \(h \), the new value \(h = n1 + n2 + i = 0 + 2 + 1 = 3 \).
- After that, we increase \(i \) by 1, so \(i \) is now 2.
- Here still, \(i = 2 \leq m = 2 \), so we go inside the loop, and assign, to the variable \(h \), the new value \(h = n1 + n2 + i = 0 + 2 + 2 = 4 \).
- After that, we increase \(i \) by 1, so \(i \) is now 3.
- For \(i = 3 \) and \(m = 2 \), the condition \(i \leq m \) is no longer satisfied, so we get out of the loop.
- Finally, we increase the value \(h \) by 1, getting \(h = 5 \).

The value 5 is the desired value of the function \(f(0, 2, 2) \).

Comment. Instead of tracing the Java program, we can trace the original formulas for primitive recursion, which for \(n1 = 0 \) and \(n2 = 2 \), take the form

\[
h(0, 2, 0) = 2;
\]

\[
h(0, 2, m + 1) = 0 + 2 + m + 1.
\]

For \(m = 0 \), the second formula leads to

\[
h(0, 2, 1) = 0 + 2 + 0 + 1 = 3.
\]

For \(m = 1 \), this formula leads to

\[
h(0, 2, 2) = 0 + 2 + 0 + 2 = 4.
\]

Thus, in this case, \(h = PR(\ldots) = 4 \).

To get the value of the desired function \(f = \sigma(PR(\ldots)) \), we need to add 1 to the \(PR \) expression \(PR(\ldots) = 4 \), so the final answer is 5.