1. Translate, step-by-step, the following for-loop into a primitive recursive expression:

```java
int x = p * q;
for (int i = 1; i <= r; i++)
    x = x + q;
```

You can use `add(., .)` (sum) and `mult(., .)` (product) in this expression.
What is the value of this function when $p = 1$, $q = 2$, and $r = 2$?

2. Translate, step-by-step, the following primitive recursive function into a for-loop:

$$f = \sigma(\text{PR}(\text{mult}(\pi^2_2, \sigma(0)), \text{add}(\sigma(\pi^4_1), \pi^4_3))).$$

For this function f, what is the value $f(2, 0, 1)$?

3-4. Prove, from scratch, that the function $f(p, q) = p \% (q + 2)$ is primitive recursive. Start with the definitions of a primitive recursive function, and use only this definition in your proof — do not simply mention results that we proved in class, prove them.

5. Prove that the following function $f(p, q)$ is μ-recursive: $f(p, q) = p / q$ when each of the values p and q is either 1 or 3, and $f(p, q)$ is undefined for other pairs (p, q).

6. Translate the following μ-recursive expression into a while-loop:

$$f(a, b) = \mu m.(m * a >= b).$$

For this function f, what is the value of $f(2, 4)$? $f(2, 5)$?

7-8. Suppose that someone comes up with a new proof that not every computable function is primitive recursive, by providing a new example of a function $N(n)$ which is computable but not primitive recursive. What if, in addition to 0, π^k_i, and σ, we also allow this new function $N(n)$ in our constructions? Let us call functions that can be obtained from 0, π^k_i, σ, and $N(n)$ by using composition and primitive recursion N-primitive recursive functions. Will then every computable function be N-primitive recursive? Prove that your answer is correct.

9. Design a Turing machine for computing $n + 2$ in unary code. Trace it for $n = 3$.

10. Design a Turing machine for computing $n + 2$ in binary code. Trace it for $n = 3$.

Theory of Computations, Test 1 for the course CS 5315/CS 6315, Spring 2021

Name: ___

Up to 5 handwritten pages are allowed.

1. Translate, step-by-step, the following for-loop into a primitive recursive expression:

```java
int x = p * q;
for (int i = 1; i <= r; i++)
    x = x + q;
```

You can use `add(., .)` (sum) and `mult(., .)` (product) in this expression.
What is the value of this function when $p = 1$, $q = 2$, and $r = 2$?

2. Translate, step-by-step, the following primitive recursive function into a for-loop:

$$f = \sigma(\text{PR}(\text{mult}(\pi^2_2, \sigma(0)), \text{add}(\sigma(\pi^4_1), \pi^4_3))).$$

For this function f, what is the value $f(2, 0, 1)$?

3-4. Prove, from scratch, that the function $f(p, q) = p \% (q + 2)$ is primitive recursive. Start with the definitions of a primitive recursive function, and use only this definition in your proof — do not simply mention results that we proved in class, prove them.

5. Prove that the following function $f(p, q)$ is μ-recursive: $f(p, q) = p / q$ when each of the values p and q is either 1 or 3, and $f(p, q)$ is undefined for other pairs (p, q).

6. Translate the following μ-recursive expression into a while-loop:

$$f(a, b) = \mu m.(m * a >= b).$$

For this function f, what is the value of $f(2, 4)$? $f(2, 5)$?

7-8. Suppose that someone comes up with a new proof that not every computable function is primitive recursive, by providing a new example of a function $N(n)$ which is computable but not primitive recursive. What if, in addition to 0, π^k_i, and σ, we also allow this new function $N(n)$ in our constructions? Let us call functions that can be obtained from 0, π^k_i, σ, and $N(n)$ by using composition and primitive recursion N-primitive recursive functions. Will then every computable function be N-primitive recursive? Prove that your answer is correct.

9. Design a Turing machine for computing $n + 2$ in unary code. Trace it for $n = 3$.

10. Design a Turing machine for computing $n + 2$ in binary code. Trace it for $n = 3$.
