Single Use Expressions, Optimizing Compilers, and Rounding

1 Single Use Expressions

In general, if we apply straightforward interval computations to estimate the range of a given expression \(y = f(x_1, \ldots, x_n) \) on given intervals \([x_1, x_i]\), we get not the exact range \(y \), but an enclosure \(Y \supset y \) for the range.

For example, for the expression \(f(x) = x^2 - 2x + 1 = x \cdot x - 2x + 1 \) on the interval \([1, 2]\), straightforward interval computations lead to

\[
[1, 2] \cdot [1, 2] - 2 \cdot [1, 2] + 1 = [1, 4] - [2, 4] + 1 = [1 - 4, 4 - 2] + 1 = [-3, 2] + 1 = [1, 3],
\]

while the actual range of the expression \(f(x) = (x - 1)^2 \) on this interval is equal to \([0, 1]\).

However, if we have an expression in which each variable occurs only once — such expressions are called Single Use expressions (SUE, for short), then straightforward interval computations lead to

\[
([1, 2] - 1)^2 = [0, 1]^2 = [1, 2],
\]

2 Optimizing Compilers

What is an optimizing compiler. Compilers try to simplify the expression to make them computable faster. Let us give two examples.

- An optimizing compiler will replace the expression \(a \cdot b + a \cdot c \) that requires two multiplications and one addition with an equivalent expression \(a \cdot (b+c) \) that requires one multiplication and one addition.

- An optimizing compiler will replace the expression

\[
\frac{1}{1 + \frac{a}{b}}
\]
that requires two divisions and one addition with an equivalent expression

\[
\frac{b}{a+b}
\]

that requires one division and one addition.

Should we rely on optimizing compilers? How does the use of optimizing compilers affect interval computations?

Sometimes, an optimizing compiler helps. Let us assume that we want to estimate the range of the expression \(a \cdot b + a \cdot c\) when \(a \in [-1, 1]\), \(b \in [1, 2]\), and \(c \in [-2, -1]\).

In this example, straightforward interval computations lead to

\[
[-1, 1] \cdot [1, 2] + [-2, -1] \cdot [-2, 2] = [-4, 4].
\]

For this example, optimizing compiler – aiming to minimize the number of multiplications – will transform the original expression into \(a \cdot (b + c)\). The new expression is SUE, so straightforward interval computations lead to the exact range:

\[
[-1, 1] \cdot ([1, 2] + [-2, -1]) = [-1, 1] \cdot [-1, 1] = [-1, 1].
\]

Sometimes, an optimizing compiler makes things worse. Let us consider the problem of estimating the expression

\[
\frac{1}{1 + \frac{a}{b}}
\]

when \(a = b = [10, 20]\). This is a SUE expression, so straightforward interval computations lead to

\[
\frac{1}{1 + \frac{[10, 20]}{[10, 20]}} = \frac{1}{1 + [10, 20]} \cdot \frac{1}{[10, 20]} = \frac{1}{1 + [0.5, 2]} = \frac{1}{[1.5, 3]} = [0.333 \ldots, 0.666 \ldots].
\]

For this example, an optimizing compiler – aiming to minimize number of divisions – will transform the original expression into

\[
\frac{b}{b + a}
\]

For this new expression, straightforward interval computations lead to a wider interval:

\[
\frac{[1, 2]}{[1, 2] + [1, 2]} = [1, 2] \cdot \frac{1}{[2, 4]} = [1, 2] \cdot [0.25, 0.5] = [0.25, 1].
\]
3 Rounding

Reminder. When we multiply two numbers with fixed number of digits after a decimal point in a computer, we get more digits than a computer can represent. So, the computer usually rounds this result to the nearest.

For example, if we only use numbers with 2 digits after the decimal point, and a computer needs to multiply 0.13 and 0.93, it gets the value $0.13 \cdot 0.23 = 0.1203$ which it then rounds to 0.12.

Problem. This will not work if we are trying, e.g., to find the guaranteed bound for the product $y = x_1 \cdot x_2$ when $x_1 \in [0.10, 0.13]$ and $x_2 \in [0.90, 0.93]$. The actual range of the product is

$$[y, \bar{y}] = [0.10 \cdot 0.90, 0.13 \cdot 0.93] = [0.09, 0.1203].$$

This means that we can guarantee that if:

- x_1 is in the interval $[0.10, 0.13]$ and
- x_2 is in the interval $[0.90, 0.93]$,

then we their product $y = x_1 \cdot x_2$ is:

- larger than or equal to 0.09 and
- smaller than or equal to 0.1203.

However, if we use the usual roundings and get the interval $[0.09, 0.12]$, we can no longer guarantee that the product is smaller than or equal to 0.12 – the product could be equal to 0.1203 and thus, be larger than 0.12.

Solution. To get guaranteed bounds, we need to round down the lower endpoint, and to round up the upper endpoint.

Example. In the above example, when the actual range is $[0.09, 0.1203]$, this means that after proper rounding, we get the interval $[0.09, 0.13]$.

3