How to Program Numerical Differentiation
Method: Idea

Formulation of the problem: reminder. We have:

- an algorithm \(f(x_1, \ldots, x_n) \);
- measurement results \(\tilde{x}_1, \ldots, \tilde{x}_n \), and
- accuracies \(\Delta_1, \ldots, \Delta_n \).

What we want to compute. We want to compute the values
\(y = \tilde{y} - \Delta \) and
\(\bar{y} = \tilde{y} + \Delta \), where
\(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) and
\[
\Delta = \sum_{i=1}^{n} |f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + \Delta_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) - \tilde{y}|.
\]

How can we represent all this in a computer. In Java, \(f \) is a method. We want our program to be as general as possible, to be applicable to any \(n \). For each \(n \), a natural way to represent measurement results is by an array, similarly accuracies.

How we can program it.

```java
public static void numerical(double[] tildexi, double[] deltai){
    double tildey = f(tildexi);
    double delta = 0.0;
    for(int i = 0; i < tildexi.length; i++)
        {tildexi[i] += deltai[i];
        delta += Math.abs(f(tildexi) - tildey);
        tildexi[i] -= deltai[i];}
    System.out.println("The lower endpoint is ", tildey - delta);
    System.out.println("The lower endpoint is ", tildey + delta);
}```