How to compute partial derivatives

```java
public double partialDeriv(double x, int i, double h)
{
    double tilda y = f(tilda x);
    int n = tilda x. length;
    double[] x_mod = new double[n];
    for (j = 0; j < n; j++)
    {
        x_mod[j] = tilda x[j];
    }
    x_mod[i] += h;
    double y_mod = f(x_mod);
    return (y_mod - y_tilda) / h;
}
```

AGENDA

- **f(x_1, ..., x_{i-1}, x_{i+1}, x_i)**

Next Week

- **Test on Tuesday**

 - **Thur. Sep 25**
 - preview or test
 - **Tues. Sep 30**
 - **TEST**
 - **Thur. Oct 2**
 - Work on your project day.
 - **Tues. Oct 6**
 - **Report**

- **Monday, Sept 29**
 - **10:30 - 11:30 AM**
 - R. Baker Kear Fott

SCANN08
Problem:

we have \(f(x_1, \ldots, x_n) \)
- \(\bar{x}_1, \ldots, \bar{x}_n \)
- \(\sigma_1, \ldots, \sigma_n \)

We want: \(\tilde{y} \),
\[\text{We won't use numerical differentiation} \]

Algorithm

\[
\sigma = \sqrt{\sum_{i=1}^{n} \left(f(\bar{x}_1, \ldots, \bar{x}_{i-1}, \bar{x}_i + \sigma_i \tilde{x}_{i+1}, \ldots, \bar{x}_n) - \tilde{y} \right)^2}
\]

From computational point of view

We did:
small \(n \)
- we used numerical diff. the main tool.
- we used simulators (which run much longer) to check on results.

Monte Carlo Simulations

Fix number of Iterations \(N \)

For each iteration \(k = 1, \ldots, N \)
* Sim. meas. errors \(\Delta x_i^{(k)} := \sigma_i \cdot \text{randn} \)
* Sim. actual values \(x_i^{(k)} := \bar{x}_i - \Delta x_i^{(k)} \)
* Sim. \(y_i^{(k)} = f(x_1^{(k)}, \ldots, x_n^{(k)}) \)

\[\sigma = \sqrt{\frac{1}{N} \sum_{k=1}^{N} (\Delta y_i^{(k)})^2} \]

Accurate: \(\frac{1}{\sqrt{N}} \)
3\% \(\rightarrow \) \(N = 1000 \)
10\% \(\rightarrow \) \(N = 100 \)
Null AW for testing

Write

\[t_{k} = \text{array } \xi_{1}, \ldots, \xi_{n} \]

\[\sigma_{1}, \ldots, \sigma_{n} \]

Compute \(\sigma \)

\[\Delta \text{ Main true is in computing } \sigma \]

Numerical Differentiation method \(n+1 \) cells to \(f \)

Monte Carlo method \(N+1 \) cells to \(f \)

\[\# \text{ of cells to } \xi \]

\[\text{vs. } n \]

\[N = N'(100) \]

\[n \]

\[n > 100 \text{ use Monte Carlo} \]

\[\text{else } \text{ Numerical} \]
Geo Sciences

200 m

7-8 shots

300-7000

Can we do better?