Scheduling/Planning - EP in cases where uncertainty does not exist.

In cases where the problem can be solved in a mathematical way is theoretical not complete, but where it can be solved in an empirical way is practical and complete & in most cases implemented.

Our function goes over through all the bounds.

\[f(x, t) = \text{Method to Solve: } \begin{cases} \text{1. complete} \\ \text{2. feasible} \end{cases} \]
Using Brute Force Approach

Constraint = \[V_l, f(x, y) \in [y_l - \Delta y, y_l + \Delta y] \]

This kind of problem is called inverse problem / parameter estimation problem.

Constraint Programming

variables

domains for the variables (make the problem discrete/variable)

constraints

Solutions

\(f_1, f_2, f_3, \ldots, f_n \) 10 digits

CP = continuous of solution

Forwarding helps in case of FP numbers

Constraints

discrete

CSP (constraint satisfaction problem)

continuous

(solving)

you cannot enumerate

\(x = 0 \)

\(x = f'(x) \)