Basic Math Facts that We Studied in Class

1 Optimization

To find the values x that maximize or minimize a function $f(x)$ of one variable, we find all the points at which the derivative $\frac{df}{dx}$ is equal to 0, compute the value of the function at all these points, and select a point at which this value is, correspondingly, the largest or the smallest.

To find the values x_1, \ldots, x_n at which a function $f(x_1, \ldots, x_n)$ of several variables attains, e.g., its largest value, we take into account that at these values, a change in each of the variables will decrease the value of the function, so it attains maximum over each x_i. Thus, all the partial derivatives must be equal to 0:

$$\frac{\partial f}{\partial x_1} = 0, \ldots, \frac{\partial f}{\partial x_n} = 0.$$

Similar equations hold if we want to find the values that minimize a given function.

2 Why Linear Interpolation

Suppose that we have several equidistance points

$$x_0, x_1 = x_0 + \Delta x, x_2 = x_1 + \Delta x = x_0 + 2\Delta x, \ldots, x_i = x_0 + i \cdot \Delta x, \ldots$$

all the way to $x_n = x_0 + n \cdot \Delta x$. Let us consider the situation when:

- we know the values y_0 and y_n of a function $f(x)$ at the two endpoints points x_0 and x_n, and
- we want to estimate the values $y_i = f(x_i)$ of this function for all other points.

In many practical situations, we know that the dependence $y = f(x)$ is smooth, which means that when the values of x are close, the corresponding values of y are also close. For our problem, this means that

$$y_1 \approx y_0, y_2 \approx y_1, \ldots, y_n \approx y_{n-1}.$$

In other words, we want all the differences $e_i = y_i - y_{i-1}$ to be close to 0: $e_1 \approx 0, e_2 \approx 0, \ldots, e_n \approx 0$. Thus, we want the point $e = (e_1, \ldots, e_n)$ be close
to the point \((0, \ldots, 0)\). The square of the distance between these two points is equal to \(\sum_{i=1}^{n} e_i^2\). If we want the smoothest possible interpolation, we need to minimize this sum, i.e., minimize the expression
\[
e_1^2 + \ldots + e_n^2 = (y_1 - y_0)^2 + (y_2 - y_1)^2 + \ldots + (y_i - y_{i-1})^2 + (y_{i+1} - y_i)^2 + \ldots + (y_n - y_{n-1})^2.
\]
Here, the unknowns are \(y_1, y_2, \ldots, y_{n-1}\).

Differentiating the above expression with respect to \(y_1\) and equating the derivative to 0, we get
\[
2(y_1 - y_0) + 2(y_2 - y_1) \cdot (-1) = 0.
\]
Dividing both sides by 2 and moving the negative term to the other side, we get
\[
y_1 - y_0 = y_2 - y_1.
\]
Similarly, differentiating with respect to \(y_i\) and equating the derivative to 0, we get
\[
2(y_i - y_{i-1}) + 2(y_{i+1} - y_i) \cdot (-1) = 0.
\]
Dividing both sides by 2 and moving the negative term to the other side, we get
\[
y_i - y_{i-1} = y_{i+1} - y_i.
\]
Thus, we have
\[
y_1 = y_0 = y_2 - y_1 = y_3 - y_2 = \ldots,
\]
i.e., the difference between the two neighboring values of \(y_i\) is the same. Let us denote this difference by \(\Delta y\). Thus, \(y_1 = y_0 + \Delta y, y_2 = y_1 + \Delta y = y_0 + 2\Delta y, \ldots\), and, in general, \(y_i = y_0 + i \cdot \Delta y\).

From \(x_i = x_0 + i \cdot \Delta x\), we conclude that \(i = \frac{x_i - x_0}{\Delta x}\). Substituting this value \(i\) into the formula for \(y_i\), we get
\[
y_i = y_0 + \frac{x_i - x_0}{\Delta x} \cdot \Delta y = x_i \cdot \frac{\Delta y}{\Delta x} + \left(y_0 - x_0 \cdot \frac{\Delta y}{\Delta x} \right),
\]
i.e., a linear formula \(y = a \cdot x + b\), where
\[
a = \frac{\Delta y}{\Delta x} \text{ and } y_0 - x_0 \cdot \frac{\Delta y}{\Delta x}.
\]

3 Constraint Optimization

In many practical situations, we need to find the value that maximize a given function \(f(x_1, \ldots, x_n)\) under constraint \(g(x_1, \ldots, x_n) = 0\). (A more general constraint \(a(x) = b(x)\) can be described in this form for \(g(x) = a(a) - b(x)\).) This constraint optimization problem can be solved as follows:
• first, we consider an unconstrained optimization problem of optimizing the auxiliary function $f(x_1, \ldots, x_n) + \lambda \cdot g(x_1, \ldots, x_n)$, where λ is an unknown parameter; this parameter is known as Langange multiplier; as a result, we get a solution $x_i(\lambda)$ depending on λ;

• we plug in these solutions into the constraint $g(x_1, \ldots, x_n) = 0$, thus getting an equation for λ; we solve this equation, finding λ;

• finally, we plug the resulting value λ into the expression $x_i(\lambda)$, thus finding the solution to the original constraint optimization problem.

If we have several constraints $g_1(x) = 0, \ldots, g_m(x) = 0$, then we need to similarly consider a function $f(x) + \lambda_1 \cdot g_1(x) + \ldots + \lambda_m \cdot g_m(x)$ with several parameters $\lambda_1, \ldots, \lambda_m$.

4 Linearization

By definition, a derivative is a limit:

$$\frac{df}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

By definition, a limit means that when Δx is small, the two terms are almost equal, i.e., that

$$\frac{df}{dx} \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$

Multiplying both sides by Δx and moving $f(x)$ to the right-hand side, we conclude that

$$f(x + \Delta x) \approx f(x) + \frac{df}{dx} \cdot \Delta x.$$

If we have a function $f(x_1, x_2)$ of two variables, we can use the derivative with respect to x_1 to conclude that

$$f(x_1 + \Delta x_1, x_2 + \Delta x_2) \approx f(x_1, x_2 + \Delta x_2) + \frac{\partial f}{\partial x_1} \cdot \Delta x_1.$$

Here, we can use the derivative with respect to x_2 and get

$$f(x_1, x_2 + \Delta x_2) \approx f(x_1, x_2) + \frac{\partial f}{\partial x_2} \cdot \Delta x_2.$$

Substituting this expression into the previous formula, we conclude that

$$f(x_1 + \Delta x_1, x_2 + \Delta x_2) \approx f(x_1, x_2) + \frac{\partial f}{\partial x_1} \cdot \Delta x_1 + \frac{\partial f}{\partial x_2} \cdot \Delta x_2.$$

In general, we get

$$f(x_1 + \Delta x_1, \ldots, x_n + \Delta x_n) \approx f(x_1, \ldots, x_n) + \frac{\partial f}{\partial x_1} \cdot \Delta x_1 + \ldots + \frac{\partial f}{\partial x_n} \cdot \Delta x_n. \quad (1)$$

This expression is known as linearization (or the first terms in Taylor series).
5 Gradient Descent

If we can solve the system of equations $\frac{\partial f}{\partial x_i} = 0$, we can find the minimum of a function. However, often, these equations are too complicated and not easy to solve. In this case, a reasonable idea is to minimize a linearized version (1) of the objective function. We start with some point (x_1, \ldots, x_n) and we want to find a point $x'_i = x_i + \Delta x_i$ in some small δ-vicinity of this point for which the linearized expression (1) is the smallest possible. Thus, we minimize the expression (1) under the constraint

$$(\Delta x_1)^2 + \ldots + (\Delta x_n)^2 = \delta^2.$$

For this problem, the Lagrange multiplier method leads to the unconstrained optimization problem:

$$f(x_1 + \Delta x_1, \ldots, x_n + \Delta x_n) \approx f(x_1, \ldots, x_n) + \frac{\partial f}{\partial x_1} \cdot \Delta x_1 + \ldots + \frac{\partial f}{\partial x_n} \cdot \Delta x_n + \lambda \cdot ((\Delta x_1)^2 + \ldots + (\Delta x_n)^2 - \delta^2) \to \min.$$

Differentiation this expression with respect to Δx_i and equating the derivative to 0, we get

$$\frac{\partial f}{\partial x_i} + 2\lambda \cdot \Delta x_i = 0,$$

hence

$$\Delta x_i = -\alpha \cdot \frac{\partial f}{\partial x_i},$$

where we denoted $\alpha \overset{\text{def}}{=} \frac{1}{2\lambda}$.

Thus, based on the original point x_i, we move to a new point

$$x'_i = x_i - \alpha \cdot \frac{\partial f}{\partial x_i}.$$

Based on the point x'_i, we similarly get a new point x''_i, etc. This optimization technique is known as gradient descent.

6 Backpropagation

How a neural network works. As we mentioned in class, the simplest 3-layer neural network works as follows:

• first, we have a layer in which each neuron k performs a linear transformation to the inputs x_1, \ldots, x_n, and thus, produces a value

$$z_k = \sum_{i=1}^{n} w_{ki} \cdot x_i - w_k0;$$

4
• then, we have a non-linear layer in which we apply, to each output z_k of the first layer, a non-linear transformation, resulting in $y_k = s_k(z_k)$, for some function $s_k(z)$; this function is known as the activation function;

• finally, we have a linear layer that transforms the values y_k into their linear combination $y = \sum_{k=1}^{K} W_k \cdot y_k - W_0$.

Substituting the expressions for y_k and z_k into this formula, we conclude that

$$y = \sum_{k=1}^{K} W_k \cdot s_k \left(\sum_{i=1}^{n} w_{ki} \cdot x_i - w_{k0} \right) - W_0.$$

Traditional neural networks use sigmoid activation function (borrowed from biological neurons):

$$s_k(z) = s(z) = \frac{1}{1 + \exp(-z)},$$

so

$$y = \sum_{k=1}^{K} W_k \cdot s \left(\sum_{i=1}^{n} w_{ki} \cdot x_i - w_{k0} \right) - W_0.$$

How to train a neural network: idea. We know the values $\tilde{y}^{(p)}$, $p = 1, \ldots, P$, corresponding to given inputs $x^{(p)} = (x_1^{(p)}, \ldots, x_n^{(p)})$. We want to find the weights w_{ki} and W_k for which the neural network, for each of given inputs, will produce the value as close to the desired output $y^{(p)}$ as possible. In other words, for each pattern $(x_1, \ldots, x_n, \tilde{y})$, we want to minimize the square of the difference

$$J = (y - \tilde{y})^2.$$

To find the weights that minimize this difference, we will use the gradient descent method. On each step of this method, we replace each original weight w with the new value $w + \Delta w$, where $\Delta w = -\alpha \frac{\partial J}{\partial w}$. To come up with the computational formulas, let us compute the corresponding partial derivatives.

Analysis of the problem. Due to chain rule, for each weight,

$$\frac{\partial J}{\partial w} = 2(y - \tilde{y}) \cdot \frac{\partial y}{\partial w}.$$

Let us denote the difference $y - \tilde{y}$ (i.e., the approximation error) by e. Then, we have

$$\frac{\partial J}{\partial w} = 2e \cdot \frac{\partial y}{\partial w},$$

and thus,

$$\Delta w = -2\alpha \cdot e \cdot \frac{\partial y}{\partial w}.$$
For W_0, we have $\frac{\partial y}{\partial W_0} = -1$, so
\[\Delta W_0 = 2\alpha \cdot e. \] (1)

For W_k, we have $\frac{\partial y}{\partial W_k} = y_k$, so
\[\Delta W_k = -2\alpha \cdot e \cdot y_k. \]

From the computational viewpoint, we can simplify this formula by taking into account that we have already computed $2\alpha \cdot e$ when computing ΔW_0, so we can simply take
\[\Delta W_k = -\Delta W_0 \cdot y_k. \] (2)

For w_{k0}, we have
\[\frac{\partial y}{\partial w_{k0}} = \frac{\partial y}{\partial y_k} \frac{\partial y_k}{\partial w_{k0}} = W_k \cdot \frac{\partial s}{\partial w_{k0}} \left(\sum_{i=1}^{n} w_{ki} \cdot x_i - w_{k0} \right) =
\]
\[W_k \cdot s' \left(\sum_{i=1}^{n} w_{ki} \cdot x_i - w_{k0} \right) \cdot (-1). \]

Here, due to the definition of $s(z)$, we have
\[s'(z) = \frac{\exp(-z)}{(1 - \exp(-z))^2} = \frac{\exp(-z)}{1 - \exp(-z)} \cdot \frac{1}{1 - \exp(-z)}. \]

The second term is simply $s(z)$, the first can be computed as
\[1 - s(z) = 1 - \frac{1}{1 - \exp(-z)} = \frac{1 - (1 - \exp(-z))}{1 - \exp(-z)} = \frac{\exp(-z)}{1 - \exp(-z)}, \]

thus $s'(z) = s(z) \cdot (1 - s(z))$. For $z = z_k$, we have $s(z_k) = y_k$, so $s'(z_k) = y_k \cdot (1 - y_k)$, and the formula for Δw_{k0} takes the form
\[\Delta w_{k0} = -2\alpha \cdot e \cdot W_k \cdot y_k \cdot (1 - y_k) \cdot (-1) = 2\alpha \cdot e \cdot W_k \cdot y_k \cdot (1 - y_k). \]

We already know the product $2\alpha \cdot e \cdot y_k$, it is equal to $-\Delta W_k$, so
\[\Delta w_{k0} = -\Delta W_k \cdot W_k \cdot (1 - y_k). \] (3)

Finally, for w_{ki}, we have
\[\frac{\partial y}{\partial w_{ki}} = \frac{\partial y}{\partial y_k} \frac{\partial y_k}{\partial w_{ki}} = W_k \cdot \frac{\partial s}{\partial w_{ki}} \left(\sum_{i=1}^{n} w_{ki} \cdot x_i - w_{k0} \right) =
\]
\[W_k \cdot s' \left(\sum_{i=1}^{n} w_{ki} \cdot x_i - w_{k0} \right) \cdot x_i. \]
So,
\[\Delta w_{ki} = -2 \alpha \cdot e \cdot W_k \cdot y_k \cdot (1 - y_k) \cdot x_i. \]

We know that \(2 \alpha \cdot e \cdot W_k \cdot y_k \cdot (1 - y_k) = \Delta w_{k0} \), so all we need to get \(\Delta w_{ki} \) is to multiply it by \(-x_i\):
\[\Delta w_{ki} = -\Delta w_{k0} \cdot x_i. \] (4)

Thus, we arrive at the following algorithm – known as backpropagation.

Resulting algorithm. We start with random values of the weights. We select some \(\alpha \), e.g., \(\alpha = 0.1 \).

Then, we cycle over all the patterns: first use the 1st one, then the 2nd one, etc., then again the 1st one, etc., until all the approximation errors become small.

For each pattern \((x_1, \ldots, x_n, \bar{y})\), we first compute the values
\[y_k = s \left(\sum_{i=1}^{n} w_{ki} \cdot x_i - w_{k0} \right), \]
then we compute \(y = \sum_{k=1}^{K} W_k \cdot y_k - W_0 \), and the approximation error \(e = y - \bar{y} \).

Then, we use formulas (1)–(4) to find the changes to all the weights, and then replace the original weights with the new values \(W_0 + \Delta W_0, W_k + \Delta W_k \), etc.

After this, we apply the new weights to the next pattern, etc.