Solution to Problem 11

Task.

- What can you say about the Kolmogorov complexity of a string 0101...01 (repeated 1000 times). Is it C-random for C = 10? Explain your answer.

- Prove that Kolmogorov complexity is not computable.

What can we say about the Kolmogorov complexity of the given string? By definition, the Kolmogorov complexity $K(x)$ of a string x is the length $\text{len}(p_0)$ of the shortest program p_0 that prints this string.

Kolmogorov complexity is not computable, so we cannot compute $K(x)$, but we can find an upper bound for $K(x)$. Indeed, if we have a program p that prints the string x, then, by definition, $K(x) \leq \text{len}(p)$.

We can write a simple loop to print the given sequence:

```java
for(int i=1, i<=1000, i++)
    System.out.print("01");
```

This program p has $\text{len}(p) = 48$ symbols, so we conclude that $K(x) \leq 48$.

Is this sequence random? Random means $K(x) \geq \text{len}(x) - C$, for $C = 10$. In our case,

$$\text{len}(x) = 2 \cdot 1000 = 2000,$$

so

$$\text{len}(x) - C = 2000 - 10 = 1990,$$

while $K(x) \leq 48$. Clearly, $K(x) < \text{len}(x) - C$, so the sequence x is not random.

Proof. Let us prove this statement by contradiction. Let us assume that that the Kolmogorov complexity is computable, i.e., that there exists an algorithm that, given a string x, computes $K(x)$. Then, given a string x, we can check check whether this string is C-random, i.e., whether $K(x) \geq \text{len}(x) - C$, as follows:

- first, we use the algorithm for computing $K(x)$ – whose existence we assumed – to compute $K(x)$;

- then, we check whether this computed value is greater than or equal to $\text{len}(x) - C$.

Thus, we get an algorithm that checks whether a string is \(C \)-random. But in the lecture, we proved that such algorithm is not possible. This contradiction proves that our assumption cannot be true. Thus, no algorithm is possible that computes \(K(x) \).