Why Some Power Laws Are Possible And Some Are Not

Edgar Daniel Rodriguez Velasquez1,2, Vladik Kreinovich2, Olga Kosheleva2, and Hoang Phuong Nguyen3

1Department of Civil Engineering
Universidad de Piura in Peru (UDEP), Piura, Peru
edgar.rodriguez@udep.pe

2University of Texas at El Paso, El Paso, TX 79968, USA,
edrodriguezvelasquez@miners.utep.edu
vladik@utep.edu, olgak@utep.edu

3Division Informatics, Math-Informatics Faculty
Thang Long University, Nghiem Xuan Yem Road
Hoang Mai District, Hanoi, Vietnam, nhphuong2008@gmail.com
1. Power Laws Are Ubiquitous

- In many application areas, the dependence between two quantities \(x \) and \(y \) is described by the formula

\[
y = A \cdot x^a \text{ for some } a \text{ and } A.
\]

- Such dependencies are known as *power laws*.
- Power laws are truly ubiquitous.
- They describe how the aerodynamic resistance force depends on the plane’s velocity.
- They describe how the perceived signal depends on the intensity of the signal that we hear and see.
- They describe how the mass of celestial structures depends on the structure’s radius, etc.
2. Sometimes, Not All Power Laws Are Possible

- The parameters A and a have to be determined from the experiment.
- In some application areas, all pairs (A, a) are possible.
- In some other applications areas, however, not all such pairs are possible.
- Sometimes, a is fixed, and A can take all possible values.
- In other application areas:
 - we have different values of A,
 - but for each A, we can only have one specific value of a.
3. Not All Power Laws Are Possible (cont-d)

- One such example can be found in transportation engineering.

- It describes the dependence of number y of cycles until fatigue failure on the initial strain x.

- In many such situations, the value of a corresponding to A is determined by the following empirical formula

 $$a = c_0 + c_1 \cdot \ln(A).$$

- The case when the value a is fixed can be viewed as a particular case $c_1 = 0$ of this empirical formula.
4. Resulting Challenge

- How can we explain the formula \(a = c_0 + c_1 \cdot \ln(A) \)?

- In this talk, we provide a theoretical explanation for this formula.

- To come up with this explanation:
 - we recall the reason why power laws are ubiquitous in the first place
 - because they correspond to scale-invariant dependencies.

- We then use the scale-invariance idea to explain the ubiquity of the desired formula.
5. Power Laws and Scale Invariance

- The main purpose of data processing is to deal with physical quantities.
- However, in practice, we only deal with the numerical values of these quantities.
- What is the difference?
- The difference is that:
 - to get a numerical value,
 - we need to select a measuring unit for measuring the quantity.
- If:
 - we replace the original measuring unit with a new one which is \(\lambda \) times smaller,
 - then all numerical values are multiplied by \(\lambda \):

\[
x \rightarrow X = \lambda \cdot x.
\]
6. Power Laws and Scale Invariance (cont-d)

- For example, if we move from meters to centimeters:
 - all the numerical values will be re-scaled: multiplied by 100;
 - e.g., 1.7 m becomes $1.7 \cdot 100 = 170$ cm.
7. Scale-Invariance

- In many application areas, there is no fixed measuring unit.
- The choice of the measuring unit is rather arbitrary.
- In such situations, it is reasonable to require that:
 - the dependence \(y = f(x) \) between the quantities \(x \) and \(y \)
 - should not depend on the choice of the unit.
- Of course, this does not mean that \(y = f(x) \) imply \(y = f(X) = f(\lambda \cdot x) \) for the exact same function \(f(x) \).
- That would mean that \(f(\lambda \cdot x) = f(x) \) for all \(x \) and \(\lambda \).
- So \(f(x) \) is a constant and thus, that there is no dependence.
8. Scale-Invariance (cont-d)

- What we need to do to keep the same dependence is:
 - to accordingly re-scale y,
 - to $Y = \mu \cdot y$ for some μ depending on λ.

- For example, the area y of a square is equal to the square of its size $y = x^2$.

- This formula is true if we use meters to measure length and square meters to measure area.

- The same formula holds if we use centimeters instead of meters.

- However, then, we should use square centimeters instead of square meters.

- In this case, $\lambda = 100$ corresponds to $\mu = 10000$.
9. Scale-Invariance (cont-d)

- So, we arrive at the following definition of scale-invariance:

 - for every \(\lambda > 0 \) there exists a value \(\mu > 0 \) for which, for every \(x \) and \(y \),

 - the relation \(y = f(x) \) implies that \(Y = f(X) \) for \(X = \lambda \cdot x \) and \(Y = \mu \cdot y \).
10. Scale-Invariance and Power Laws

• It is easy to check that every power law is scale-invariant.
• Indeed, it is sufficient to take $\mu = \lambda^a$.
• Then, from $y = A \cdot x^a$ we get

 \[Y = \mu \cdot y = \lambda^a \cdot y = \lambda^a \cdot A \cdot x^a = a \cdot (\lambda \cdot x)^a = a \cdot X^a. \]
• So, indeed $Y = f(X)$.
• It turns out that, vice versa, the only continuous scale-invariance dependencies are power laws.
• For differentiable functions $f(x)$, this can be easily proven.
• Indeed, by definition, scale-invariance means that $\mu(\lambda) \cdot f(x) = f(\lambda \cdot x)$.
• Since $f(x)$ is differentiable, $\mu(\lambda) = \frac{f(\lambda \cdot x)}{f(x)}$ is also differentiable, as the ratio of two differentiable functions.
11. Scale-Invariance and Power Laws (cont-d)

• Since \(f(x) \) and \(\mu(\lambda) \) are differentiable, we can differentiate the equality \(\mu(\lambda) \cdot f(x) = f(\lambda \cdot x) \) w.r.t. \(\lambda \):

\[
\mu'(\lambda) \cdot f(x) = x \cdot f'(\lambda \cdot x).
\]

• In particular, for \(\lambda = 1 \), we get \(\mu_0 \cdot f(x) = x \cdot f'(x) \), where \(\mu_0 \) \(\text{def} \) \(= \mu'(1) \), so \(\mu_0 \cdot f = x \cdot \frac{df}{dx} \).

• We can separate the \(x \) and \(f \) is we divide both sides by \(x \cdot f \) and multiply by \(dx \): \(\frac{df}{f} = \mu_0 \cdot \frac{dx}{x} \).

• Integrating both sides, we get \(\ln(f) = \mu_0 \cdot \ln(x) + c \), where \(c \) is the integration constant.

• Thus, for \(f = \exp(\ln(f)) \), we get

\[
f(x) = \exp(\mu_0 \cdot \ln(x) + c) = A \cdot x^a.
\]

• Here \(A \) \(\text{def} \) \(= \exp(c) \) and \(a \) \(\text{def} \) \(= \mu_0 \).
12. Main Idea

- In principle, for the corresponding application areas, we can have different values A and a.
- This means that the value of the quantity y is not uniquely determined by the value of the quantity x.
- There must be some other quantity z that influences y: $y = F(x, z)$.
- Different situations – i.e., different pairs (A, a) – are characterized by different values of the quantity z.
13. Main Assumption

- For each fixed z, the dependence of y on x is described by a power law.

- Thus, when the value of z is fixed, the dependence of y on x is scale-invariant.

- It is therefore reasonable to conclude that, vice versa:
 - for each fixed value x,
 - the dependence of y on z is also scale-invariant.
14. This Assumption Leads to the Desired Explanation

- Let us show that this assumption indeed explains the desired formula.
- For each z, the dependence of y on x is a power law:
 \[F(x, z) = A(z) \cdot x^{a(z)}. \]
- Similarly, for each x, the dependence of y on z is also a power law:
 \[F(x, z) = B(x) \cdot z^{b(x)}. \]
- Thus, $A(z) \cdot x^{a(z)} = B(x) \cdot z^{b(x)}$ for all x and z.
15. Explanation (cont-d)

- In particular, for $x = 1$, we get $A(z) = B(1) \cdot z^{b(1)}$.
- Similarly, for $z = 1$, we get $B(x) = A(1) \cdot x^{a(1)}$.
- Substituting these expressions into the above equality, we get $B(1) \cdot z^{b(1)} \cdot x^{a(z)} = A(1) \cdot x^{a(1)} \cdot z^{b(x)}$.
- In particular, for $x = e$, we get $B(1) \cdot z^{b(1)} \cdot e^{a(z)} = A(1) \cdot e^{a(1)} \cdot z^{b(e)}$.
- So, $\exp(a(z)) = \frac{A(1) \cdot \exp(a(1))}{B(1)} \cdot z^{b(e) - b(1)}$.
- From $A(z) = B(1) \cdot z^{b(1)}$, we conclude that $z^{b(1)} = \frac{A}{B(1)}$.
- Thus, $z = \frac{A^{1/b(1)}}{B(1)^{1/b(1)}}$.
16. Explanation (cont-d)

- *Reminder:*
 \[z = \frac{A^{1/b(1)}}{B(1)^{1/b(1)}}. \]

- Substituting this expression for \(z \) into the formula for \(\exp(a) \), we get:
 \[\exp(a) = \frac{A(1) \cdot \exp(a(1))}{B(1)} \cdot \frac{1}{B(1)^{(b(e)-b(1))/b(1)}} \cdot A^{(b(e)-b(1))/b(1)}}. \]

- So, \(\exp(a) = C_0 \cdot A^{c_1} \) for some values \(C_0 \) and \(c_1 \).

- Taking logarithms of both sides, we now get the desired dependence \(a = c_0 + c_1 \cdot \ln(A) \), where \(c_0 \overset{\text{def}}{=} \ln(C_0) \).

- So, we indeed have the desired derivation.
17. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).