How to Generate “Nice” Cubic Polynomials – with Rational Coefficients, Rational Zeros and Rational Extrema: A Fast Algorithm

Laxman Bokati¹, Olga Kosheleva², and Vladik Kreinovich¹

¹Computational Science Program
²Department of Teacher Education
University of Texas at El Paso
El Paso, TX 79968, USA
lbokati@miners.utep.edu, olgak@utep.edu, vladik@utep.edu
1. Need for Nice Calculus-Related Examples

- After students learn the basics of calculus, they practice them graphing functions $y = f(x)$.
- They find the roots (zeros), i.e., values where $f(x) = 0$.
- They find the extreme points, i.e., values where the derivative $f'(x)$ is equal to 0.
- They find out whether $f(x)$ increases or decreases between extreme points – by checking the sign of $f'(x)$.
- They use this information – plus the values of $f(x)$ at several points x – to graph the function.
- For this practice, students need examples for which they can compute both the zeros and the extreme points.
2. Cubic Polynomials: the Simplest Case When Such an Analysis Makes Sense

- The simplest possible functions are polynomials.
- For linear functions, the derivative is constant, so there are no extreme point.
- For quadratic functions, there is an extreme point.
- However, after studying quadratic equations, students already know how to graph the corresponding function.
- So, for quadratic polynomials, there is no need to use calculus.
- The simplest case when calculus tools are needed is the case of cubic polynomials.
3. To Make It Simpler For Students, It Is Desirable to Limit Ourselves to Rational Roots

- Students are much more comfortable with rational numbers than with irrational ones.
- Thus, it is desirable to have examples when all the coefficients, zeros, and extreme points of a are rational.
- Good news is that when we know that the roots are rational, it is (relatively) easy to find these roots.
- Indeed, for each rational root \(x = \frac{p}{q} \) of a polynomial \(a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \ldots + a_0 \) with integer coefficients:
 - the numerator \(p \) is a factor of \(a_0 \), and
 - the denominator \(q \) is a factor of \(a_n \).
- How can we find polynomials for which both zeros and extreme points are rational?
4. What Is Known and What We Do

• An algorithm for generating such polynomials was recently proposed.

• This algorithm, however, is not the most efficient one.

• For each tuple of the corresponding parameter values, it uses exhaustive trial-and-error search.

• In this presentation, we produce an efficient algorithm for producing nice polynomials.

• Namely, we propose simple computational formulas:
 – for each tuple of the corresponding parameters, these formulas produce a “nice” cubic polynomial;
 – every “nice” cubic polynomial can be thus generated.

• For each tuple, our algorithm requires the same constant number of elementary steps.
5. Analysis of the Problem

- A general cubic polynomial with rational coefficients has the form \(a \cdot X^3 + b \cdot X^2 + c \cdot X + d \).

- Roots and extreme points of \(f(x) \) do not change if we simply divide all its values by the same constant \(a \).

- Thus, it is sufficient to consider polynomials with only three parameters: \(X^3 + p \cdot X^2 + q \cdot X + r \), where

\[
p = \frac{b}{a}, \quad q = \frac{c}{a}, \quad r = \frac{d}{a}.
\]

- We can further simplify the problem if we replace \(X \) with \(x = X + \frac{p}{3} \), then we get \(x^3 + \alpha \cdot x + \beta \), where

\[
\alpha = q - \frac{p^2}{3} \quad \text{and} \quad \beta = r - \frac{p \cdot q}{3} + \frac{2p^3}{27}.
\]
6. **Analysis of the Problem (cont-d)**

- Let r_1, r_2, and r_3 denote rational roots of $x^3 + \alpha \cdot x + \beta$, then, we have
 \[x^3 + \alpha \cdot x + \beta = (x - r_1) \cdot (x - r_2) \cdot (x - r_3). \]

- So, $r_1 + r_2 + r_3 = 0$, $\alpha = r_1 \cdot r_2 + r_2 \cdot r_3 + r_1 \cdot r_3$, and $\beta = -r_1 \cdot r_2 \cdot r_3$.

- Substituting $r_3 = -(r_1 + r_2)$ into these formulas, we get
 \[\alpha = -(r_1^2 + r_1 \cdot r_2 + r_2^2) \] and $\beta = r_1 \cdot r_2 \cdot (r_1 + r_2)$.

7. Using the Fact That the Extreme Points x_0 Should Also Be Rational

• Differentiating and equating the derivative to 0, we get

$$3x_0^2 - (r_1^2 + r_1 \cdot r_2 + r_2^2) = 0.$$

• This is equivalent to $3x_0^2 - 3y^2 - z^2 = 0$, where

$$y \overset{\text{def}}{=} \frac{r_1 + r_2}{2} \quad \text{and} \quad z \overset{\text{def}}{=} \frac{r_1 - r_2}{2}.$$

• If we divide both sides of this equation by y^2, we get

$$3X_0^2 - 3 - Z^2 = 0,$$

where $X_0 \overset{\text{def}}{=} \frac{x_0}{y}$ and $Z \overset{\text{def}}{=} \frac{z}{y}$.

• One of the solution of above equation is easy to find: namely, when $X_0 = -1$, we get $Z^2 = 0$ and $Z = 0$.

• This means that for every y, $x_0 = -y$, y and $z = 0$ solve the above equation.
8. Using the Fact That the Extreme Points x_0 Should Also Be Rational (cont-d)

- We can now reconstruct r_1 and r_2 from y and z as $r_1 = y + z$ and $r_2 = y - z$.

- In our case, $r_1 = r_2 = y$, so $\alpha = -3y^2$ and $\beta = 2y^3$.

- We can then:
 - shift by a rational number s, $(x \to X = x + s)$, and
 - multiply all the coefficients by an arbitrary rational number a.

- Then, we get
 $$b = 3a \cdot s, \quad c = a \cdot (3s^2 - 3y^2), \quad d = a \cdot (s^3 + 2y^3).$$
9. Using the General Algorithm for Finding All Rational Solutions to a Quadratic Equation

- We have already found a solution of the equation $3X_0^2 - 3 - Z^2 = 0$, corresponding to $X_0 = -1$: then $Z = 0$.

- Every other solution (X_0, Z) can be connected to this simple solution $(-1, 0)$ by a straight line.

- A general equation of a straight line passing through the point $(-1, 0)$ is $Z = t \cdot (X_0 + 1)$.

- When X_0 and Z are rational, $t = \frac{Z}{X_0 + 1}$ is rational.

- Substituting this expression for Z into the equation, we get $3X_0^2 - 3 - t^2 \cdot (X_0 + 1)^2 = 0$.

- Since $X_0 \neq -1$, we can divide both sides by $X_0 + 1$. then $3 \cdot (X_0 - 1) - t^2 \cdot (X_0 + 1) = 0$, hence

$$X_0 = \frac{3 + t^2}{3 - t^2} \text{ and } Z = \frac{6t}{3 - t^2}.$$
10. Towards a General Description of All “Nice” Polynomials

- For every rational \(y \), we can now take \(x_0 = y \cdot X_0 \), \(y \), and \(z = y \cdot Z = \frac{6yt}{3 - t^2} \).

- Based on \(y \) and \(z \), we can compute \(r_1 = y + z \) and \(r_2 = y - z \).

- Then, we can compute \(\alpha \) and \(\beta \):

\[
\alpha = -3y^2 - z^2 \quad \text{and} \quad \beta = 2y \cdot (y^2 - z^2).
\]

- Now, we can apply shift by \(s \) and multiplication by \(a \).

- Thus, we arrive at the following algorithm for computing all possible “nice” cubic polynomials.
11. Resulting Algorithm for Computing All “Nice” Cubic Polynomials

• We use four arbitrary rational numbers \(t, y, s, \) and \(a; \) based on these numbers, we first compute
 \[z = \frac{6yt}{3 - t^2}. \]

• Then, we compute the coefficients \(b, c, \) and \(d \) of the resulting “nice” polynomial (\(a \) we already know):
 \[b = 3a \cdot s; \quad c = a \cdot (3s^2 - 3y^2 - z^2); \]
 \[d = a \cdot (s^3 + 2y \cdot (y^2 - z^2)). \]

• These expressions cover almost all “nice” polynomials, with the exception of the following family:
 \[b = 3a \cdot s, \quad c = a \cdot (3s^2 - 3y^2), \quad d = a \cdot (s^3 + 2y^3). \]
12. Acknowledgments

This work was supported in part by the US National Science Foundation via grant HRD-1242122 (Cyber-ShARE).
13. Bibliography

- C. L. Adams and J. Board, “Conditions on a coefficients of a reduced cubic polynomial such that it and its derivative are factorable over the rational numbers”, Electronic Proceedings of the 28th Annual International Conference on Technology in Collegiate Mathematics, Atlanta, Georgia, March 10–13, 2016, pp. 33–45.