How to Faster Test a Device for Different Combinations of Parameters

Francisco Zapata and Luis Gutierrez

University of Texas at El Paso
El Paso, Texas 79968, USA
fazg74@gmail.com, lcgutierrez@miners.utep.edu
1. Formulation of the Problem

- Many devices have to function correctly under many different values of the corresponding parameters: e.g.,
 - for temperatures within the given range,
 - for pressure within the given range,
 - for humidity within the given range, etc.

- Ideally, we should test the device for all possible combinations of the corresponding parameters.

- However, often, such a testing is not realistic. For example:
 - if we have 20 possible parameters, and
 - we consider 10 possible values of each of these parameters,
 - then 10^{20} tests require $3 \cdot 10^{12}$ years – longer than the lifetime of the Universe.
2. Solution: Test for All Pairs, or All Triples, etc.

• We cannot test for all possible combinations of all the parameters.

• So, we need to test at least for all possible values of each parameter separately:
 – for all possible values of outside temperature,
 – for all possible values of humidity, etc.

• In this testing, we may overlook possible joint effect of two or more different parameters.

• To take such an effect into account, it makes sense to test all pairs of values.

• Similarly, we may want to test all possible triples of values, etc.
3. How to Arrange Such a Test: First Simple Idea

- Let us assume that for each of n parameters, we test for N different values.
- In this case, we need $n \cdot N$ experiments to test the device’s behavior for all N values of each of n parameters.
- For each of $\binom{n}{2}$ pairs of parameters, we test all possible N^2 pairs of values.
- Thus, we need $\binom{n}{2} \cdot N^2$ experiments.
- For each of $\binom{n}{k}$ k-tuples of parameters, we test all possible N^k tuples of values.
- Thus, we need $\binom{n}{k} \cdot N^k$ experiments.
4. We Can Test Faster than That

- To test all possible values of each parameter, the above approach requires $n \cdot N$ experiments.

- In reality, it is sufficient to perform only N experiments:
 - in the first experiment, we select the first value of each of n parameters;
 - in the second experiment, we select the second value of each of n parameters; etc.

- When we have many parameters $n \gg 1$, we then have $n \cdot N \gg N$.

- So, this idea drastically decreases the number of necessary experiments – and thus, the testing time.

- We show that a similar speed-up is possible when we test all possible pairs (triples, etc.) of parameters.
5. Formulating the Problem in Precise Terms

- Let \(n, N, \) and \(k \) be positive natural numbers.
- The number \(n \) will be called the number of parameters, and the number \(N \) will be called the number of values.
- By an experiment, we mean a tuple of \(n \) integers \(j_1, \ldots, j_n \), where \(1 \leq j_i \leq N \) for all \(i \).
- By a testing design, we mean a finite set of experiments.
- We say that a testing design \(T \) tests each combination of \(k \) parameters if:
 - for every two \(k \)-tuples \(1 \leq i_1 < \ldots < i_k \leq N \) and \(v_1, \ldots, v_k \) \((1 \leq v_\ell \leq N) \),
 - \(T \) contains an experiment in which we use the \(v_\ell \)-th value of each \(i_\ell \)-th parameter.
6. Main Result

- **Objective:** minimize the number of experiments.

- **Naive idea:** tests each of \(\binom{n}{k} \cdot N^k = O(n^k) \cdot N^k \) combinations of \(k \) parameters.

- For \(n = k \), we need to test all \(N^k \) possible combinations of parameters, so we cannot have fewer than \(N^k \) tests.

- However, as the above case of \(k = 1 \) shows, we can try to minimize the factor depending on \(n \).

- For each \(k \), there is a design that tests each combination of \(k \) parameters in \(O(\log^{k-1}(n)) \cdot N^k \) experiments.

- For \(k = 1 \), we get the known fact that we need \(O(N) \) experiments.

- For testing all pairs \((k = 2) \), we need \(O(\log(n)) \cdot N^2 \) experiments \((\ll O(n^2) \cdot N^2 \) experiments in naive case).
7. **New Testing Design: Case** $k = 2$

- Our design consists of $B = \lceil \log_2(n) \rceil \sim \log(n)$ groups, each having N^2 experiments.
- Each number $x \leq n - 1$ can be represented by B bits $\text{bit}_j(x)$, $j = 1, \ldots, B$.
- In the b-th group, for each pair of integers (f, s) such that $1 \leq f, s \leq N$, we take:
 - $j_i = f$ if $\text{bit}_b(i - 1) = 0$, and
 - $j_i = s$ if $\text{bit}_b(i - 1) = 1$.
- For each pair $i_1 < i_2$, at least one bit b in the binary expansions of $i_1 - 1$ and $i_2 - 1$ is different.
- For this bit b, the corresponding group of experiments tests all possible pairs (f, s).
8. **First Example: \(n = 2 \)**

- For \(n = 2 \), we need \(B = 1 \) bit to represent integers 0 and 1.
- Thus, in this case, we have a single group of experiments: for each pair \((s, f)\), we set \(x_1 = f \) and \(x_2 = s \).
- In other words, each experiment has the form \((s, f)\).
9. Second Example: \(n = 4 \)

- For \(n = 4 \), we need \(B = 2 \) bits to represent 0, 1, 2, and 3: \(0_{10} = 00_2, 1_{10} = 01_2, 2_{10} = 10_2, 3_{10} = 11_2 \).
- In this case, we have two groups of \(N^2 \) experiments.
- In the 1st group, we assign \(s \) to all \(i \) s.t. \(\text{bit}_1(i-1) = 0 \), and \(f \) to all \(i \) s.t. \(\text{bit}_1(i-1) = 1 \).
- Thus, each experiment has the form \((f, s, f, s)\).
- In the 2nd group, we assign \(s \) to all \(i \) s.t. \(\text{bit}_2(i-1) = 0 \), and \(f \) to all \(i \) s.t. \(\text{bit}_2(i-1) = 1 \).
- Thus, each experiment has the form \((f, f, s, s)\).
- If \(i_1 < i_2 \) are both odd or even, then the 2nd group of experiments tests all possible combinations of values.
- If one of \(i_1 \) and \(i_2 \) is odd and another even, then the 1st group tests all possible combinations of values.
10. Third Example: \(n = 8 \)

- For \(n = 8 \), we need \(B = 3 \) bits to represent integers from 0 to 7.

- Thus, in this case, we have three groups of \(N^2 \) experiments each.

- In the first group of experiments, each experiment has the form
 \[(f, s, f, s, f, s, f, s)\].

- In the second group of experiments, each experiment has the form
 \[(f, f, s, s, f, f, s, s)\].

- In the third group of experiments, each experiment has the form
 \[(f, f, f, f, s, s, s, s)\].
11. Testing Design: Case of $k > 2$

- For $n = k$, we just have to test all N^k possible combinations of values of all k parameters.
- For $n > k$, we divide the set of n parameters into two halves of size $n/2$.
- To cover situations when all k parameters are in the 1st half, we use the testing design for $n/2$ and k.
- Each experiment in this design is copied for the second half, so, e.g., a design $f s$ becomes $f s f s$.
- To cover situations in which i parameters are in the 1st half, we combine:
 - each experiment from design for $n/2$ and i with
 - each experiment from design for $n/2$ and $k - i$.
12. Case of $k > 2$: Number of Experiments

- Let $E_k(n)$ be the number of experiments that our algorithm requires for n and k; then:

$$E_k(n) = E_k(n/2) + \sum_{i=1}^{k-1} E_{k-i}(n/2) \cdot E_i(n/2).$$

- One can prove, by induction, that this implies that

$$E_k(n) = O(\log^k_2(n)) \cdot N^k.$$
13. **Example: \(n = 4 \) and \(k = 3 \)**

- It is not possible to have \(n/2 = 2 \) parameters and test all possible values of \(k = 3 \) of them.
- We combine each experiment with \(n = 2 \) and \(k = 2 \) with each experiment with \(n = 2 \) and \(k = 1 \).
- There is one group of experiments with \(n = 2 \) and \(k = 2 \): \(sf \), with \(s \) and \(f \) going from 1 to \(N \).
- There is one group corresponding to \(n = 2 \) and \(k = 1 \): \(tt \), with \(t \) from 1 to \(N \).
- Thus, by combining them, we get experiments of the type \(sftt \).
- Finally, we combine each experiment with \(n = 2 \) and \(k = 1 \) with each experiment with \(n = 2 \) and \(k = 2 \).
- Similarly, we get \(ttsf \).
- So, we get two groups of experiments: \(sftt \) and \(ttsf \).
14. Example: $n = 8$ and $k = 3$

- First, we list all the experiments corresponding to $n/2 = 4$ and $k = 3$, and repeat each for the second half as well.
- Thus, from $sftt$ and $ttsf$, we get $sftstftt$ and $tstftttsf$.
- Then, we combine each experiment with $n = 4$ and $k = 2$ with each experiment with $n = 4$ and $k = 1$.
- There are 2 groups of experiments with $n = 4$ and $k = 2$: $sfsf$ and $ssff$.
- There is one group for $n = 4$ and $k = 1$: $tttt$.
- Combining, we get $sfsttttt$ and $ssfftttt$.
- Finally, we combine each experiment with $n = 4$ and $k = 1$ with each experiment with $n = 4$ and $k = 2$.
- Combining, we get $tttstsf$ and $tttssff$.
- Totally, we have 6 groups of N^3 experiments.