Mathematical and Computational Aspects of a Joint Inversion Paper by M. Moorkamp, A. G. Jones, and S. Fishwick

Anibal Sosa and Vladik Kreinovich

Cyber-ShARE Center
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
usosaaguirre@miners.utep.edu, vladik@utep.edu
1. Formulation of the Geophysical Problem

• **Problem**: we are interested in some quantity \(q \).

• **Example**: we are interested in how the density \(\rho \) depends on the depth \(d \): \(\rho = \rho(d) \).

• **Situation**: we have several types \(t \) of measurement results \(t \), e.g., they use seismic data, resistivity, etc.

• **Measurement results**: for each type of data \(t \), we have measurement results \(m_{t,i}, i = 1, \ldots, n_t \).

• **Measurement accuracy**: for each measurement, we have estimates \(\sigma_{t,i} \) of the accuracy of this measurement.

• **Problem**: sometimes, we only have a general accuracy estimate \(\sigma_t \) for all measurements of type \(t \).

• **Solution**: in this case, we take \(\sigma_{t,i} \approx \sigma_t \).
2. Formulation of the Geophysical Problem (cont-d)

• **Reminder:**

 – we are interested in a quantity q;
 – we have measurement results $m_{t,i}$ of different types t;
 – we know (approximately) the accuracies $\sigma_{t,i}$ of different measurements.

• **Forward models** M_t enables us, given q, to predict the corresponding measured values

\[m_{i,t} \approx M_t(i, q). \]

• **Least Squares formulation:** find q that minimizes

\[\sum_t \Phi_t, \text{ where } \Phi_t \overset{\text{def}}{=} \sum_{i=1}^{n_t} \frac{(m_{t,i} - M_t(i, q))^2}{\sigma_{t,i}^2}. \]

• **Problem:** the accuracies $\sigma_{t,i}$ are only approximately known.
3. **Main Idea of the Paper**

- *Ideal case:* if we knew the exact accuracies $\sigma_{t,i}$, we could apply the Least Squares approach.
- *In practice:* we only know approximate values of $\sigma_{t,i}$.
- *Reason:* for some t, we systematically overestimate the measurement errors; for other t, we underestimate.
- Whether we over- or under-estimate depends on t.
- *Natural idea:* assume that the actual accuracies are $\sigma_{t,i}^{\text{act}} = k_t \cdot \sigma_{t,i}$.
- *Resulting solution:* for all possible combinations of the correction coefficients k_t, find q that minimizes

 $$\sum_t \frac{1}{k_t^2} \cdot \Phi_t, \quad \text{where } \Phi_t = \sum_{i=1}^{n_t} \frac{(m_{t,i} - M_t(i, q))^2}{\sigma_{t,i}^2}.$$

- *Selection* of an appropriate solution ("model") q is made by a geophysicist.
4. Pareto Optimality

• **Reminder:** for all possible combinations of the correction coefficients k_t, find q that minimizes

$$\sum_t \frac{1}{k_t^2} \cdot \Phi_t, \text{ where } \Phi_t = \sum_{i=1}^{n_t} \frac{(m_{t,i} - M_t(i, q))^2}{\sigma_{t,i}^2}.$$

• **Known:** this is \Leftrightarrow finding all Pareto optimal solutions q, i.e., q which are not worse than any other q':

q worse than $q' \Leftrightarrow (\Phi_t(q) \leq \Phi_t(q'))$ for all t and

$$\Phi_t(q) < \Phi_t(q')$$ for some t.

• **How they find it:** use genetic algorithm, with the minimized function $O(q) \overset{\text{def}}{=} \#\{q' : q' \text{ worse than } q\}$.

5. Genetic Algorithm: Brief Description

- Each \(q \) is a sequence of values: e.g., \(\rho(d_i) \) at different depths \(d_i \).
- We start with several randomly generated sequences.
- At each step, we repeatedly
 - select two sequences \(s_1 \) and \(s_2 \) – the smaller \(O(q) \), the larger probability of selection;
 - select random splitting locations, so \(s_i = s_{i1}s_{i2}s_{i3} \ldots \), where \(s_{i1} \) is before the 1st location, etc.;
 - combine \(s_1 \) and \(s_2 \) into a new sequence \(s_{11}s_{22}s_{13}s_{24} \ldots \);
 - mutate, i.e., randomly change some elements of the new sequence.
- These new sequences form a new generation, with which we deal on the next step.
- We repeat this procedure many (\(N \gg 1 \)) times.
6. Selecting a Single Model

- **Reminder:** we find all the solutions which are Pareto-optimal with respect to $\Phi = (\Phi_1, \Phi_2, \ldots)$.

- **Interesting case:** when we have two types of measurements.

- **In this case:** we find all the solutions which are Pareto-optimal with respect to $\Phi = (\Phi_1, \Phi_2)$.

- **Empirical fact:**
 - if we plot the dependence of $\ln(\Phi_1)$ on $\ln(\Phi_2)$, then
 - at the geophysically most meaningful solution, the corresponding curve has the largest curvature.

- **Name:** the corresponding curve is called an *L-curve*, since it has a sharp corner – like a letter L.

- **Resulting idea:** look for the solution at which the curvature is the largest.