From Gauging Accuracy of Quantity Estimates to Gauging Accuracy and Resolution of Field Measurements: A Broad Prospective on Fuzzy Transforms

Irina Perfilieva1 and Vladik Kreinovich2

1Inst. for Research and Applications of Fuzzy Modeling
University of Ostrava, Czech Republic
2Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA
vladik@utep.edu
1. General Problem of Data Processing under Uncertainty

- **Indirect measurements**: way to measure y that are difficult (or even impossible) to measure directly.

- **Idea**: $y = f(x_1, \ldots, x_n)$

- **Problem**: measurements are never 100% accurate: $	ilde{x}_i \neq x_i$ ($\Delta x_i \neq 0$) hence

$$\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \neq y = f(x_1, \ldots, x_n).$$

What are bounds on $\Delta y = \tilde{y} - y$?
2. Probabilistic and Interval Uncertainty

- **Traditional approach**: we know probability distribution for Δx_i (usually Gaussian).
- **Where it comes from**: calibration using standard MI.
- **Problem**: calibration is not possible in fundamental science like cosmology.
- **Natural solution**: assume upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i].$$
3. Interval Computations: A Problem

- **Given**: an algorithm $y = f(x_1, \ldots, x_n)$ and n intervals $x_i = [x_i, \bar{x}_i]$.

- **Compute**: the corresponding range of y:
 $$[\underline{y}, \bar{y}] = \{ f(x_1, \ldots, x_n) \mid x_1 \in [\underline{x}_1, \bar{x}_1], \ldots, x_n \in [\underline{x}_n, \bar{x}_n] \}.$$

- **Fact**: NP-hard even for quadratic f.

- **Challenge**: when are feasible algorithm possible?

- **Challenge**: when computing $y = [\underline{y}, \bar{y}]$ is not feasible, find a good approximation $Y \supseteq y$.
4. In Practice, the Situation is Often More Complex

- **Dynamics**: we measure the values $v(t)$ of a quantity v at a certain moment of time t.

- **Spatial dependence**: we measure the value $v(x, t)$ at a certain location x.

- **Geophysical example**: we are interested in the values of the density at different locations and at different depth.

- **Traditional**: uncertainty in the measured value, $\tilde{v} \approx v$.

- **New**: uncertainty in location x, $\tilde{x} \approx x$.

- **Additional uncertainty**: the sensor picks up the “average” value of v at locations close to \tilde{x}.

- **Question**: how to describe and process the new uncertainty (resolution)?
5. Outline

• Question (reminder): how to describe and process uncertainty both
 – in the measured value \tilde{v} and
 – in the spatial resolution \tilde{x}?

• Natural idea: the answer depends on what we know about the spatial resolution.

• Possible situations:
 – we know exactly how the measured values \tilde{v}_i are related to $v(x)$, i.e., $\tilde{v}_i = \int w_i(x) \cdot v(x) \, dx + \Delta v_i$;
 – we only know the upper bound δ on the location error $\tilde{x} - x$ (this is similar to the interval case);
 – we do not even know δ.

• What we do: describe how to process all these types of uncertainty.
6. **Situations in Which We Have Detailed Knowledge**

- **Fact:** all our information about $v(x)$ is contained in the measured values \tilde{v}_i.

- **Linearity assumption:** $\tilde{v}_i = v_i + \Delta v_i$, where:
 - we have $v_i \overset{\text{def}}{=} \int w_i(x) \cdot v(x) \, dx$; and
 - Δv_i is the measurement error; e.g., $|\Delta v_i| \leq \Delta_i$.

- **Comment:** v_i can be viewed as the value of $v(x)$ at a “fuzzy” point characterized by uncertainty $w_i(x)$.

- **Description of the situation:** we know the weights $w_i(x)$.

- **Find:** range $[y, \bar{y}]$ for $y \overset{\text{def}}{=} \int w(x) \cdot v(x) \, dx$.

- **LP solution:** minimize (maximize) $\int w(x) \cdot v(x) \, dx$ under the constraints

 $$v_i \overset{\text{def}}{=} \tilde{v}_i - \Delta_i \leq \int w_i(x) \cdot v(x) \, dx \leq \bar{v}_i \overset{\text{def}}{=} \tilde{v}_i + \Delta_i.$$
7. Situations With Detailed Knowledge (cont-d)

- **Reminder:** find the range of $\int w(x) \cdot v(x) \, dx$ when $v_i \leq \int w_i(x) \cdot v(x) \, dx \leq \bar{v}_i$.

- **General case:** when no bounds on $v(x)$, bounds are infinite – unless $w(x)$ is a linear combination of $w_i(x)$.

- **In practice** (e.g., in geophysics): $v(x) \geq 0$.

- **Similar:** imprecise probabilities (Kuznetsoov, Walley).

- **Solution:** dual LP problem provides guaranteed bounds

$$\underline{v} = \sup \left\{ \sum y_i \cdot \underline{v}_i : \sum y_i \cdot w_i(x) \leq w(x) \right\};$$

$$\bar{v} = \inf \left\{ \sum y_i \cdot \bar{v}_i : w(x) \leq \sum y_i \cdot w_i(x) \right\}.$$

- **Easier** than in IP: $w_i(x)$ are localized, and we often have ≤ 2 non-zero $w_i(x)$ at each x.

- **Piece-wise linear** $w_i(x)$ and $w(x)$ – sufficient to check inequality at endpoints.
8. Situations in Which We Only Know Upper Bounds

- **Situation:** we only know;
 - the upper bound Δ on the measurement inaccuracy $\Delta v \overset{\text{def}}{=} \tilde{v} - v$: $|\Delta v| \leq \Delta$, and
 - the upper bound δ on the location error $\Delta x \overset{\text{def}}{=} \tilde{x} - x$: $|\Delta v| \leq \delta$.

- **Consequence:** the measured value \tilde{v} is Δ-close to a convex combination of values $v(x)$ for x s.t. $\|x - \tilde{x}\| \leq \Delta x$.

- **Conclusion:** $v_\delta(\tilde{x}) - \Delta \leq \tilde{v} \leq \overline{v_\delta}(\tilde{x}) + \Delta$, where:
 - $v_\delta(\tilde{x}) \overset{\text{def}}{=} \inf\{v(x) : \|x - \tilde{x}\| \leq \delta\}$, and
 - $\overline{v_\delta}(\tilde{x}) \overset{\text{def}}{=} \sup\{v(x) : \|x - \tilde{x}\| \leq \delta\}$.

- **Fact:** measurement errors are random.

- **So:** it makes sense to only consider *essential* ess inf and ess sup (i.e., inf and sup modulo measure 0 sets).
9. **What If a Model Is Only Known With Interval Uncertainty**

- **Reminder:** we can tell when an observation \((\tilde{v}, \tilde{x})\) is consistent with a model \(v(x)\):

\[
v_\delta(\tilde{x}) - \Delta \leq \tilde{v} \leq \overline{v}_\delta(\tilde{x}) + \Delta.
\]

- **Fact:** in real life, we rarely have an *exact* model \(v(x)\).
- **Usually:** we have *bounds* on \(v(x)\), i.e., an interval-valued model \(v(x) = [v^-(x), v^+(x)]\).
- **Question:** when is an observation \((\tilde{v}, \tilde{x})\) consistent with an *interval-valued* model?
- **General answer:** when the observation \((\tilde{v}, \tilde{x})\) is consistent with *one* of the models \(v(x) \in v(x)\).
- **A checkable answer:** an observation \((\tilde{v}, \tilde{x})\) is consistent with an interval-valued model \([v^-(x), v^+(x)]\) when

\[
\overline{v}^-_\delta(\tilde{x}) - \Delta \leq \tilde{v} \leq \overline{v}^+_\delta(\tilde{x}) + \Delta.
\]
10. **Situations in Which We Only Know Upper Bounds** (cont-d)

- **Fact:** the actual \(v(x) \) is often continuous.

- **Case of continuous \(v(x) \):** we can simplify the above criterion.

- **Simplification:** the set \(\tilde{m} \) of all measurement results \((\tilde{x}, \tilde{x})\) is consistent with the model \(v(x) \) iff

\[
\forall (\tilde{v}, \tilde{x}) \in \tilde{m} \exists (v(x), x) \in v \left((\tilde{v}, \tilde{x}) \text{ is } (\Delta, \delta)-\text{close to } (v(x), x)\right),
\]

i.e., \(|\tilde{v} - v| \leq \Delta \) and \(|x - \tilde{x}| \leq \delta\).

- **Hausdorff metric:** \(d_H(A, B) \leq \varepsilon \) means that:

\[
\forall a \in A \exists b \in B (d(a, b) \leq \varepsilon) \text{ and } \forall b \in B \exists a \in A (d(a, b) \leq \varepsilon).
\]

- **Conclusion:** we have an asymmetric version of Hausdorff metric (“quasi-metric”).
11. Example of Asymmetry

- **Case 1:**
 - *The actual field:* $v(0) = 1$ and $v(x) = 0$ for $x \neq 0$;
 - *Measurement results:* all zeros, i.e., $\tilde{v} = 0$ for all \tilde{x}.
 - *Conclusion:* all the measurements are consistent with the model.
 - *Reason:* the value $\tilde{v} = 0$ for $\tilde{x} = 0$ is consistent with $v(x) = 0$ for $x = \delta$ s.t. $|\tilde{x} - x| \leq \delta$.

- **Case 2:**
 - *The actual field:* all zeros, i.e., $v(x) = 0$ for all x.
 - *Measurement results:* $\tilde{v} = 1$ for $\tilde{x} = 0$, and $\tilde{v} = 0$ for all $\tilde{x} \neq 0$.
 - *Conclusion (for $\Delta < 1$):* the measurement $(1, 0)$ is inconsistent with the model.
 - *Reason:* for all x which are δ-close to $\tilde{x} = 0$, we have $v(x) = 0$ hence we should have $|\tilde{x} - v(x)| = |\tilde{x}| \leq \Delta$.
12. Situations with No Information about Location Accuracy

- *Example:* when we solve the seismic inverse problem to find the velocity distribution.

- *Natural heuristic idea:*
 - add a perturbation of size Δ_0 to the reconstructed field $\tilde{v}(x)$;
 - simulate the new measurement results;
 - apply the same algorithm to the simulated results, and reconstruct the new field $\tilde{v}_{\text{new}}(x)$.

- *Case 1:* perturbations are *not visible* in $\tilde{v}_{\text{new}}(x) - \tilde{v}(x)$.
- *So:* details of size Δ_0 *cannot* be reconstructed: $\delta > \Delta_0$.

- *Case 2:* perturbations are *visible* in $\tilde{v}_{\text{new}}(x) - \tilde{v}(x)$.
- *So:* details of size Δ_0 *can* be reconstructed: $\delta \leq \Delta_0$.
13. Towards Optimal Selection of Perturbations

- **Fact:** since perturbations are small, we can safely linearize their effects.

- **Conclusion:**
 - based on the results of perturbations $e_1(x), \ldots, e_k(x)$,
 - we can get the results of any linear combination
 \[e(x) = c_1 \cdot e_1(x) + \ldots + c_k \cdot e_k(x). \]

- **Fact:** usually, there is no preferred spatial location.

- **Conclusion:** we can choose different locations as origins ($x = 0$) of the coordinate system.

- **Natural requirement:** the results of perturbations should not change if we change the origin $x = 0$.

14. Towards Optimal Perturbations (cont-d)

- **Reminder**: the class of perturbations should not change when we change the origin $x = 0$.

- **Fact**: in new coordinates, $x_{\text{new}} = x + x_0$.

- **Conclusion**: the set $\{c_1 \cdot e_1(x) + \ldots + c_k \cdot e_k(x)\}$ must be shift-invariant: $e_i(x + x_0) = \sum_{j=1}^{k} c_{ij}(x_0) \cdot e_j(x)$.

- **When** $x_0 \to 0$, we get a system of linear differential equations with constant coefficients.

- **General solution**: linear combination of expressions $\exp (\sum a_i \cdot x_i)$ with complex a_i.

- **Fact**: perturbations must be uniformly small.

- **So**: the only bounded perturbations are linear combinations of sinusoids.

- **Conclusion**: use sinusoidal perturbations.
15. Acknowledgments

This work was supported in part:

- by NSF Cyber-Share grant HRD-0734825:
 - A Center for Sharing Cyberresources to Advance Science and Education;
- by Grant 1 T36 GM078000-01 from the National Institutes of Health:
 - Enhancement of Qualitative Science;
- by the Japan Advanced Institute of Science and Technology (JAIST) Int’l Joint Research Grant 2006-08.
16. Interval Computations as a Particular Case of Global Optimization

- **Given:** an algorithm \(y = f(x_1, \ldots, x_n) \) and \(n \) intervals \(x_i = [x_i, \bar{x}_i] \).

- **Compute:** the corresponding range of \(y \):
 \[[\underline{y}, \overline{y}] = \{ f(x_1, \ldots, x_n) \mid x_1 \in [x_1, \bar{x}_1], \ldots, x_n \in [x_n, \bar{x}_n] \}. \]

- **Reduction to optimization:** in the general case, \(y (\overline{y}) \):

 Minimize (Maximize) \(f(x_1, \ldots, x_n) \)

 where \(f \) is directly computable, under the constraints

 \[x_1 \leq x_1 \leq \bar{x}_1, \ldots, x_n \leq x_n \leq \bar{x}_n. \]

- **Cosmological case:** \(f \) is not directly computable:

 \[f(x_1, \ldots, x_n) \overset{\text{def}}{=} \text{argmin } F(x_1, \ldots, x_n, y_1, \ldots, y_m). \]
17. Linearization

- **General case:** NP-hard.
- **Typical situation:** direct measurements are accurate enough, so the approximation errors Δx_i are small.
- **Conclusion:** terms quadratic (or of higher order) in Δx_i can be safely neglected.
- **Example:** for $\Delta x_i = 1\%$, we have $\Delta x_i^2 = 0.01\% \ll \Delta x_i$.
- **Linearization:**
 - expand f in Taylor series around the point $(\tilde{x}_1, \ldots, \tilde{x}_n)$;
 - restrict ourselves only to linear terms:
 \[
 \Delta y = c_1 \cdot \Delta x_1 + \ldots + c_n \cdot \Delta x_n, \quad \text{where } c_i \overset{\text{def}}{=} \frac{\partial f}{\partial x_i}.
 \]
- **Interval case:** $|\Delta x_i| \leq \Delta_i$.
- **Result:** $\Delta \overset{\text{def}}{=} \max |\Delta y| = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n$.
18. Computations under Linearization: From Numerical Differentiation to Monte-Carlo Approach

- **Linearization**: \(\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i \), where \(c_i = \frac{\partial f}{\partial x_i} \).

- **Formulas**: \(\sigma^2 = \sum_{i=1}^{n} c_i^2 \cdot \sigma_i^2 \), \(\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i \).

- **Numerical differentiation**: \(n \) iterations, too long.

- **Monte-Carlo approach**: if \(\Delta x_i \) are Gaussian w/\(\sigma_i \), then \(\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i \) is also Gaussian, w/desired \(\sigma \).

- **Advantage**: # of iterations does not grow with \(n \).

- **Interval estimates**: if \(\Delta x_i \) are Cauchy, w/\(\rho_i(x) = \frac{\Delta_i}{\Delta_i^2 + x^2} \),
 then \(\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i \) is also Cauchy, w/desired \(\Delta \).

- Apply \(f \) to \(\tilde{x}_i \): \(\tilde{y} := f(\tilde{x}_1, \ldots, \tilde{x}_n) \);
- For \(k = 1, 2, \ldots, N \), repeat the following:
 - use RNG to get \(r_i^{(k)}, i = 1, \ldots, n \) from \(U[0, 1] \);
 - get st. Cauchy values \(c_i^{(k)} := \tan(\pi \cdot (r_i^{(k)} - 0.5)) \);
 - compute \(K := \max |c_i^{(k)}| \) (to stay in linearized area);
 - simulate “actual values” \(\tilde{x}_i^{(k)} := \tilde{x}_i - \delta_i^{(k)} \), where \(\delta_i^{(k)} := \Delta_i \cdot c_i^{(k)}/K \);
 - simulate error of the indirect measurement:
 \[
 \delta^{(k)} := K \cdot \left(\tilde{y} - f \left(\tilde{x}_1^{(k)}, \ldots, \tilde{x}_n^{(k)} \right) \right);
 \]
- Solve the ML equation
 \[
 \sum_{k=1}^{N} \frac{1}{\left(1 + \left(\frac{\delta^{(k)}}{\Delta} \right) \right)^2} = \frac{N}{2}
 \]
 by bisection, and get the desired \(\Delta \).
20. A New (Heuristic) Approach

- **Problem:** guaranteed (interval) bounds are too high.
- **Gaussian case:** we only have bounds guaranteed with confidence, say, 90%.
- **How:** cut top 5% and low 5% off a normal distribution.
- **New idea:** to get similarly estimates for intervals, we “cut off” top 5% and low 5% of Cauchy distribution.
- **How:**
 - find the threshold value x_0 for which the probability of exceeding this value is, say, 5%;
 - replace values x for which $x > x_0$ with x_0;
 - replace values x for which $x < -x_0$ with $-x_0$;
 - use this “cut-off” Cauchy in error estimation.
- **Example:** for 95% confidence level, we need $x_0 = 12.706$.

- **Situation:** in many practical applications, it is very difficult to come up with the probabilities.

- **Traditional engineering approach:** use probabilistic techniques.

- **Problem:** many different probability distributions are consistent with the same observations.

- **Solution:** select one of these distributions – e.g., the one with the largest entropy.

- **Example – single variable:** if all we know is that $x \in [\underline{x}, \bar{x}]$, then MaxEnt leads to the uniform distribution.

- **Example – multiple variables:** different variables are independently distributed.
22. General Limitations of Maximum Entropy Approach

- **Example:** simplest algorithm $y = x_1 + \ldots + x_n$.
- **Measurement errors:** $\Delta x_i \in [-\Delta, \Delta]$.
- **Analysis:** $\Delta y = \Delta x_1 + \ldots + \Delta x_n$.
- **Worst case situation:** $\Delta y = n \cdot \Delta$.
- **Maximum Entropy approach:** due to Central Limit Theorem, Δy is \approx normal, with $\sigma = \Delta \cdot \frac{\sqrt{n}}{\sqrt{3}}$.
- **Why this may be inadequate:** we get $\Delta \sim \sqrt{n}$, but due to correlation, it is possible that $\Delta = n \cdot \Delta \sim n \gg \sqrt{n}$.
- **Conclusion:** using a single distribution can be very misleading, especially if we want guaranteed results.
- **Examples:** high-risk application areas such as space exploration or nuclear engineering.
23. Interval Computations: A Brief History

- **Origins**: Archimedes (Ancient Greece)
- **Modern pioneers**: Warmus (Poland), Sunaga (Japan), Moore (USA), 1956–59
- **First boom**: early 1960s.
- **First challenge**: taking interval uncertainty into account when planning spaceflights to the Moon.
- **Current applications** (sample):
 - design of elementary particle colliders: Berz, Kyoko (USA)
 - will a comet hit the Earth: Berz, Moore (USA)
 - robotics: Jaulin (France), Neumaier (Austria)
 - chemical engineering: Stadtherr (USA)
24. Interval Arithmetic: Foundations of Interval Techniques

- **Problem**: compute the range
 \[[y, \bar{y}] = \{ f(x_1, \ldots, x_n) \mid x_1 \in [x_1, \bar{x}_1], \ldots, x_n \in [x_n, \bar{x}_n] \}. \]

- **Interval arithmetic**: for arithmetic operations \(f(x_1, x_2) \) (and for elementary functions), we have explicit formulas for the range.

- **Examples**: when \(x_1 \in \mathbf{x}_1 = [\underline{x}_1, \bar{x}_1] \) and \(x_2 \in \mathbf{x}_2 = [\underline{x}_2, \bar{x}_2] \), then:
 - The range \(\mathbf{x}_1 + \mathbf{x}_2 \) for \(x_1 + x_2 \) is \([\underline{x}_1 + \underline{x}_2, \bar{x}_1 + \bar{x}_2] \).
 - The range \(\mathbf{x}_1 - \mathbf{x}_2 \) for \(x_1 - x_2 \) is \([\underline{x}_1 - \underline{x}_2, \bar{x}_1 - \bar{x}_2] \).
 - The range \(\mathbf{x}_1 \cdot \mathbf{x}_2 \) for \(x_1 \cdot x_2 \) is \([\underline{y}, \bar{y}]\), where
 \[\underline{y} = \min(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \bar{x}_2, \bar{x}_1 \cdot \underline{x}_2, \bar{x}_1 \cdot \bar{x}_2); \]
 \[\bar{y} = \max(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \bar{x}_2, \bar{x}_1 \cdot \underline{x}_2, \bar{x}_1 \cdot \bar{x}_2). \]

- The range \(1/\mathbf{x}_1 \) for \(1/x_1 \) is \([1/\bar{x}_1, 1/\underline{x}_1] \) (if \(0 \not\in \mathbf{x}_1 \)).
25. **Straightforward Interval Computations: Example**

- **Example:** \(f(x) = (x - 2) \cdot (x + 2), \ x \in [1, 2] \).

- How will the computer compute it?
 - \(r_1 := x - 2; \)
 - \(r_2 := x + 2; \)
 - \(r_3 := r_1 \cdot r_2. \)

- **Main idea:** perform the same operations, but with *intervals* instead of *numbers*:
 - \(r_1 := [1, 2] - [2, 2] = [-1, 0]; \)
 - \(r_2 := [1, 2] + [2, 2] = [3, 4]; \)
 - \(r_3 := [-1, 0] \cdot [3, 4] = [-4, 0]. \)

- **Actual range:** \(f(x) = [-3, 0]. \)

- **Comment:** this is just a toy example, there are more efficient ways of computing an enclosure \(Y \supseteq y. \)
26. First Idea: Use of Monotonicity

- **Reminder:** for arithmetic, we had exact ranges.
- **Reason:** +, −, · are monotonic in each variable.
- **How monotonicity helps:** if \(f(x_1, \ldots, x_n) \) is (non-strictly) increasing (\(f \uparrow \)) in each \(x_i \), then
 \[
 f(x_1, \ldots, x_n) = [f(x_1, \ldots, x_n), f(x_1, \ldots, x_n)].
 \]
- **Similarly:** if \(f \uparrow \) for some \(x_i \) and \(f \downarrow \) for other \(x_j \) (−).
- **Fact:** \(f \uparrow \) in \(x_i \) if \(\frac{\partial f}{\partial x_i} \geq 0 \).
- **Checking monotonicity:** check that the range \([r_i, \bar{r}_i] \) of \(\frac{\partial f}{\partial x_i} \) on \(x_i \) has \(r_i \geq 0 \).
- **Differentiation:** by Automatic Differentiation (AD) tools.
- **Estimating ranges of** \(\frac{\partial f}{\partial x_i} \): straightforward interval comp.
27. Monotonicity: Example

- Idea: if the range \([r_i, \bar{r}_i]\) of each \(\frac{\partial f}{\partial x_i}\) on \(x_i\) has \(\bar{r}_i \geq 0\), then

\[
f(x_1, \ldots, x_n) = [f(x_1, \ldots, x_n), f(\bar{x}_1, \ldots, \bar{x}_n)].
\]

- Example: \(f(x) = (x - 2) \cdot (x + 2)\), \(x = [1, 2]\).

- Case \(n = 1\): if the range \([r, \bar{r}]\) of \(\frac{df}{dx}\) on \(x\) has \(r \geq 0\), then

\[
f(x) = [f(x), f(\bar{x})].
\]

- \(AD\): \(\frac{df}{dx} = 1 \cdot (x + 2) + (x - 2) \cdot 1 = 2x\).

- Checking: \([r, \bar{r}] = [2, 4]\), with \(2 \geq 0\).

- Result: \(f([1, 2]) = [f(1), f(2)] = [-3, 0]\).

- Comparison: this is the exact range.
28. Non-Monotonic Example

- **Example:** \(f(x) = x \cdot (1 - x), \ x \in [0, 1] \).

- How will the computer compute it?
 - \(r_1 := 1 - x; \)
 - \(r_2 := x \cdot r_1. \)

- **Straightforward interval computations:**
 - \(r_1 := [1, 1] - [0, 1] = [0, 1]; \)
 - \(r_2 := [0, 1] \cdot [0, 1] = [0, 1]. \)

- **Actual range:** min, max of \(f \) at \(x, \overline{x} \), or when \(\frac{df}{dx} = 0. \)

- Here, \(\frac{df}{dx} = 1 - 2x = 0 \) for \(x = 0.5 \), so
 - compute \(f(0) = 0, \ f(0.5) = 0.25, \) and \(f(1) = 0. \)
 - \(y = \min(0, 0.25, 0) = 0, \ \overline{y} = \max(0, 0.25, 0) = 0.25. \)

- **Resulting range:** \(f(x) = [0, 0.25]. \)
29. **Second Idea: Centered Form**

- **Main idea:** Intermediate Value Theorem
 \[
 f(x_1, \ldots, x_n) = f(\tilde{x}_1, \ldots, \tilde{x}_n) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \tilde{x}_i)
 \]
 for some $\chi_i \in x_i$.

- **Corollary:** $f(x_1, \ldots, x_n) \in Y$, where
 \[
 Y = \tilde{y} + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x_1, \ldots, x_n) \cdot [-\Delta_i, \Delta_i].
 \]

- **Differentiation:** by Automatic Differentiation (AD) tools.

- **Estimating the ranges of derivatives:**
 - if appropriate, by monotonicity, or
 - by straightforward interval computations, or
 - by centered form (more time but more accurate).
30. Centered Form: Example

- **General formula:**
 \[Y = f(\tilde{x}_1, \ldots, \tilde{x}_n) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x_1, \ldots, x_n) \cdot [-\Delta_i, \Delta_i]. \]

- **Example:** \(f(x) = x \cdot (1 - x), \ x = [0, 1]. \)

- **Here,** \(x = [\tilde{x} - \Delta, \tilde{x} + \Delta], \) with \(\tilde{x} = 0.5 \) and \(\Delta = 0.5. \)

- **Case \(n = 1: \)** \(Y = f(\tilde{x}) + \frac{df}{dx}(x) \cdot [-\Delta, \Delta]. \)

- **AD:** \(\frac{df}{dx} = 1 \cdot (1 - x) + x \cdot (-1) = 1 - 2x. \)

- **Estimation:** we have \(\frac{df}{dx}(x) = 1 - 2 \cdot [0, 1] = [-1, 1]. \)

- **Result:** \(Y = 0.5 \cdot (1 - 0.5) + [-1, 1] \cdot [-0.5, 0.5] = 0.25 + [-0.5, 0.5] = [-0.25, 0.75]. \)

- **Comparison:** actual range \([0, 0.25]\), straightforward \([0, 1]\).
31. Third Idea: Bisection

• **Known:** accuracy $O(\Delta_i^2)$ of first order formula

$$f(x_1, \ldots, x_n) = f(\tilde{x}_1, \ldots, \tilde{x}_n) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \tilde{x}_i).$$

• **Idea:** if the intervals are too wide, we:
 – split one of them in half ($\Delta_i^2 \rightarrow \Delta_i^2/4$); and
 – take the union of the resulting ranges.

• **Example:** $f(x) = x \cdot (1 - x)$, where $x \in x = [0, 1]$.

• **Split:** take $x' = [0, 0.5]$ and $x'' = [0.5, 1]$.

• **1st range:** $1 - 2 \cdot x = 1 - 2 \cdot [0, 0.5] = [0, 1]$, so $f \uparrow$ and $f(x') = [f(0), f(0.5)] = [0, 0.25]$.

• **2nd range:** $1 - 2 \cdot x = 1 - 2 \cdot [0.5, 1] = [-1, 0]$, so $f \downarrow$ and $f(x'') = [f(1), f(0.5)] = [0, 0.25]$.

• **Result:** $f(x') \cup f(x'') = [0, 0.25] -$ exact.
32. Alternative Approach: Affine Arithmetic

- **So far:** we compute the range of $x \cdot (1 - x)$ by multiplying ranges of x and $1 - x$.
- **We ignore:** that both factors depend on x and are, thus, dependent.
- **Idea:** for each intermediate result a, keep an explicit dependence on $\Delta x_i = \tilde{x}_i - x_i$ (at least its linear terms).
- **Implementation:**

$$a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [a, \bar{a}].$$

- **We start:** with $x_i = \tilde{x}_i - \Delta x_i$, i.e.,

$$\tilde{x}_i + 0 \cdot \Delta x_1 + \ldots + 0 \cdot \Delta x_{i-1} + (-1) \cdot \Delta x_i + 0 \cdot \Delta x_{i+1} + \ldots + 0 \cdot \Delta x_n + [0, 0].$$

- **Description:** $a_0 = \tilde{x}_i$, $a_i = -1$, $a_j = 0$ for $j \neq i$, and $[a, \bar{a}] = [0, 0]$.
33. **Affine Arithmetic: Operations**

- **Representation:** \(a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [a, \bar{a}] \).

- **Input:** \(a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + a \) and \(b = b_0 + \sum_{i=1}^{n} b_i \cdot \Delta x_i + b \).

- **Operations:** \(c = a \otimes b \).

- **Addition:** \(c_0 = a_0 + b_0, c_i = a_i + b_i, c = a + b \).

- **Subtraction:** \(c_0 = a_0 - b_0, c_i = a_i - b_i, c = a - b \).

- **Multiplication:** \(c_0 = a_0 \cdot b_0, c_i = a_0 \cdot b_i + b_0 \cdot a_i, c = a_0 \cdot b + b_0 \cdot a + \sum_{i \neq j} a_i \cdot b_j \cdot [-\Delta_i, \Delta_i] \cdot [-\Delta_j, \Delta_j] + \sum_{i} a_i \cdot b_i \cdot [-\Delta_i, \Delta_i]^2 + \left(\sum_{i} a_i \cdot [-\Delta_i, \Delta_i] \right) \cdot b + \left(\sum_{i} b_i \cdot [-\Delta_i, \Delta_i] \right) \cdot a + a \cdot b \).
34. **Affine Arithmetic: Example**

- *Example:* \(f(x) = x \cdot (1 - x), \ x \in [0, 1] \).
- Here, \(n = 1, \tilde{x} = 0.5, \) and \(\Delta = 0.5 \).
- How will the computer compute it?
 - \(r_1 := 1 - x; \)
 - \(r_2 := x \cdot r_1. \)
- *Affine arithmetic:* we start with \(x = 0.5 - \Delta x + [0, 0]; \)
 - \(r_1 := 1 - (0.5 - \Delta) = 0.5 + \Delta x; \)
 - \(r_2 := (0.5 - \Delta x) \cdot (0.5 + \Delta x), \) i.e.,
 \[
r_2 = 0.25 + 0 \cdot \Delta x - [-\Delta, \Delta]^2 = 0.25 + [-\Delta^2, 0].
 \]
- *Resulting range:* \(y = 0.25 + [-0.25, 0] = [0, 0.25]. \)
- *Comparison:* this is the exact range.
35. **Affine Arithmetic: Towards More Accurate Estimates**

- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- Meaning: a feasible (polynomial-time) algorithm will sometimes lead to excess width: $\mathbf{Y} \supset \mathbf{y}$.
- Conclusion: affine arithmetic may lead to excess width.
- Question: how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
 - affine arithmetic: $a = a_0 + \sum a_i \cdot \Delta x_i + \mathbf{a}$;
 - meaning: we keep linear terms in Δx_i;
 - idea: keep, e.g., quadratic terms
 $$a = a_0 + \sum a_i \cdot \Delta x_i + \sum a_{ij} \cdot \Delta x_i \cdot \Delta x_j + \mathbf{a}.$$
36. Interval Computations vs. Affine Arithmetic: Comparative Analysis

- **Objective:** we want a method that computes a reasonable estimate for the range in reasonable time.

- **Conclusion – how to compare different methods:**
 - how accurate are the estimates, and
 - how fast we can compute them.

- **Accuracy:** affine arithmetic leads to more accurate ranges.

- **Computation time:**
 - *Interval arithmetic:* for each intermediate result \(a \), we compute two values: endpoints \(a \) and \(\overline{a} \) of \([a, \overline{a}]\).
 - *Affine arithmetic:* for each \(a \), we compute \(n + 3 \) values:
 \[
 a_0, a_1, \ldots, a_n, a, \overline{a}.
 \]

- **Conclusion:** affine arithmetic is \(\sim n \) times slower.
37. Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty

- **We have:** a system of equations \(g_i(y_1, \ldots, y_n) = a_i \) with unknowns \(y_i \);
- **We know:** \(a_i \) with interval uncertainty: \(a_i \in [a_i, \bar{a}_i] \);
- **We want:** to find the corresponding ranges of \(y_j \).
- **First case:** for exactly known \(a_i \), we have an algorithm \(y_j = f_j(a_1, \ldots, a_n) \) for solving the system.
- **Example:** system of linear equations.
- **Solution:** apply interval computations techniques to find the range \(f_j([a_1, \bar{a}_1], \ldots, [a_n, \bar{a}_n]) \).
- **Better solution:** for specific equations, we often already know which ideas work best.
- **Example:** linear equations \(Ay = b; y \) is monotonic in \(b \).
38. Solving Systems of Equations When No Algorithm Is Known

• Idea:
 – parse each equation into elementary constraints, and
 – use interval computations to improve original ranges until we get a narrow range (= solution).

• First example: \(x - x^2 = 0.5, \ x \in [0, 1] \) (no solution).

• Parsing: \(r_1 = x^2, \ 0.5 (= r_2) = x - r_1 \).

• Rules: from \(r_1 = x^2 \), we extract two rules:
 \[
 (1) \ x \to r_1 = x^2; \quad (2) \ r_1 \to x = \sqrt{r_1};
 \]
 from \(0.5 = x - r_1 \), we extract two more rules:
 \[
 (3) \ x \to r_1 = x - 0.5; \quad (4) \ r_1 \to x = r_1 + 0.5.
 \]
39. Solving Systems of Equations When No Algorithm Is Known: Example

- (1) \(r = x^2 \); (2) \(x = \sqrt{r} \); (3) \(r = x - 0.5 \); (4) \(x = r + 0.5 \).
- *We start with:* \(x = [0, 1], \ r = (-\infty, \infty) \).

1. \(r = [0, 1]^2 = [0, 1] \), so \(r_{\text{new}} = (-\infty, \infty) \cap [0, 1] = [0, 1] \).
2. \(x_{\text{new}} = \sqrt{[0, 1]} \cap [0, 1] = [0, 1] \) – no change.
3. \(r_{\text{new}} = ([0, 1] - 0.5) \cap [0, 1] = [-0.5, 0.5] \cap [0, 1] = [0, 0.5] \).
4. \(x_{\text{new}} = ([0, 0.5] + 0.5) \cap [0, 1] = [0.5, 1] \cap [0, 1] = [0.5, 1] \).

- Conclusion: the original equation has no solutions.
40. Solving Systems of Equations: Second Example

- **Example:** \(x - x^2 = 0, x \in [0, 1] \).
- **Parsing:** \(r_1 = x^2, 0 (= r_2) = x - r_1 \).
- **Rules:** (1) \(r = x^2 \); (2) \(x = \sqrt{r} \); (3) \(r = x \); (4) \(x = r \).
- **We start with:** \(x = [0, 1], r = (-\infty, \infty) \).
- **Problem:** after Rule 1, we’re stuck with \(x = r = [0, 1] \).
- **Solution:** bisect \(x = [0, 1] \) into \([0, 0.5]\) and \([0.5, 1]\).
- **For 1st subinterval:**
 - Rule 1 leads to \(r_{\text{new}} = [0, 0.5]^2 \cap [0, 0.5] = [0, 0.25] \);
 - Rule 4 leads to \(x_{\text{new}} = [0, 0.25] \);
 - Rule 1 leads to \(r_{\text{new}} = [0, 0.25]^2 = [0, 0.0625] \);
 - Rule 4 leads to \(x_{\text{new}} = [0, 0.0625] \); etc.
 - we converge to \(x = 0 \).
- **For 2nd subinterval:** we converge to \(x = 1 \).
41. Optimization: Extending Known Algorithms to Situations with Interval Uncertainty

- **Problem:** find y_1, \ldots, y_m for which

 $$ g(y_1, \ldots, y_m, a_1, \ldots, a_m) \rightarrow \text{max}.$$

- **We know:** a_i with interval uncertainty: $a_i \in [a_i, \bar{a}_i]$;

- **We want:** to find the corresponding ranges of y_j.

- **First case:** for exactly known a_i, we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the optimization problem.

- **Example:** quadratic objective function g.

- **Solution:** apply interval computations techniques to find the range $f_j([a_1, \bar{a}_1], \ldots, [a_n, \bar{a}_n])$.

- **Better solution:** for specific f, we often already know which ideas work best.
42. Optimization When No Algorithm Is Known

- **Idea:** divide the original box \mathbf{x} into subboxes \mathbf{b}.
- If $\max_{x \in \mathbf{b}} g(x) < g(x')$ for a known x', dismiss \mathbf{b}.
- **Example:** $g(x) = x \cdot (1 - x)$, $\mathbf{x} = [0, 1]$.
- Divide into 10 (?) subboxes $\mathbf{b} = [0, 0.1], [0.1, 0.2], \ldots$
- Find $g(\tilde{\mathbf{b}})$ for each \mathbf{b}; the largest is $0.45 \cdot 0.55 = 0.2475$.
- Compute $G(\mathbf{b}) = g(\tilde{\mathbf{b}}) + (1 - 2 \cdot \mathbf{b}) \cdot [-\Delta, \Delta]$.
- Dismiss subboxes for which $\overline{Y} < 0.2475$.
- **Example:** for $[0.2, 0.3]$, we have

 \[0.25 \cdot (1 - 0.25) + (1 - 2 \cdot [0.2, 0.3]) \cdot [-0.05, 0.05].\]
- Here $\overline{Y} = 0.2175 < 0.2475$, so we dismiss $[0.2, 0.3]$.
- **Result:** keep only boxes $\subseteq [0.3, 0.7]$.
- **Further subdivision:** get us closer and closer to $x = 0.5$.