How to Take into Account Dependence Between the Inputs: From Interval Computations to Constraint-Related Set Computations

Vladik Kreinovich
Computer Science, University of Texas
El Paso, TX 79968, USA, vladik@utep.edu

The talk is based on our joint work with Martine Ceberio, Scott Ferson, Gang Xiang, Adrian Murguia, and Jorge Santillan.
1. General Problem of Data Processing under Uncertainty

- **Indirect measurements**: way to measure y that are are difficult (or even impossible) to measure directly.

- **Idea**: $y = f(x_1, \ldots, x_n)$

- **Problem**: measurements are never 100% accurate: $\tilde{x}_i \neq x_i$ ($\Delta x_i \neq 0$) hence
 \[
 \tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \neq y = f(x_1, \ldots, y_n).
 \]

 What are bounds on $\Delta y \overset{\text{def}}{=} \tilde{y} - y$?
2. Probabilistic and Interval Uncertainty

- **Traditional approach:** we know probability distribution for Δx_i (usually Gaussian).

- **Where it comes from:** calibration using standard MI.

- **Problem:** sometimes we do not know the distribution because no "standard" (more accurate) MI is available. Cases:
 - fundamental science
 - manufacturing

- **Solution:** we know upper bounds Δ_i on $|\Delta x_i|$ hence

$$x_i \in [\bar{x}_i - \Delta_i, \bar{x}_i + \Delta_i].$$
3. Interval Computations: A Problem

\begin{center}
\begin{tikzpicture}
 \node (f) at (0,0) {f};
 \foreach \x in {1,2,...,n} {
 \node (x\x) at (\x,-1) {x_\x};
 \draw[->] (x\x) -- (f);
 }
 \node (y) at (n+1,-1) {$y = f(x_1, \ldots, x_n)$};
\end{tikzpicture}
\end{center}

- **Given:**
 - an algorithm $y = f(x_1, \ldots, x_n)$ that transforms n real numbers x_i into a number y;
 - n intervals $x_i = [x_i, \bar{x}_i]$.

- **Compute:** the corresponding range of y:
 \[
 [\underline{y}, \overline{y}] = \{f(x_1, \ldots, x_n) | x_1 \in [x_1, \bar{x}_1], \ldots, x_n \in [x_n, \bar{x}_n]\}.
 \]

- **Fact:** even for quadratic f, the problem of computing the exact range y is NP-hard.

- **Practical challenges:**
 - find classes of problems for which efficient algorithms are possible; and
 - for problems outside these classes, find efficient techniques for approximating uncertainty of y.

4. **Why Not Maximum Entropy?**

- **Situation:** in many practical applications, it is very difficult to come up with the probabilities.

- **Traditional engineering approach:** use probabilistic techniques.

- **Problem:** many different probability distributions are consistent with the same observations.

- **Solution:** select one of these distributions – e.g., the one with the largest entropy.

- **Example – single variable:** if all we know is that \(x \in [x, \bar{x}] \), then MaxEnt leads to a uniform distribution on \([x, \bar{x}] \).

- **Example – multiple variables:** different variables are independently distributed.

- **Conclusion:** if \(\Delta y = \Delta x_1 + \ldots + \Delta x_n \), with \(\Delta x_i \in [-\Delta_i, \Delta_i] \), then due to Central Limit Theorem, \(\Delta y \) is almost normal, with \(\sigma = \frac{1}{\sqrt{3}} \cdot \sqrt{n} \sum_{i=1}^{n} \Delta_i^2 \).

- **Why this may be inadequate:** when \(\Delta_i = \Delta \), we get \(\Delta \sim \sqrt{n} \), but due to correlation, it is possible that \(\Delta = n \cdot \Delta_i \sim n \gg \sqrt{n} \).

- **Conclusion:** using a single distribution can be very misleading, especially if we want guaranteed results – e.g., in high-risk application areas such as space exploration or nuclear engineering.
5. General Approach: Interval-Type Step-by-Step Techniques

- **Problem:** it is difficult to compute the range y.
- **Solution:** compute an enclosure Y such that $y \subseteq Y$.
- **Interval arithmetic:** for arithmetic operations $f(x_1, x_2)$, we have explicit formulas for the range.
- **Examples:** when $x_1 \in x_1 = [\underline{x}_1, \bar{x}_1]$ and $x_2 \in x_2 = [\underline{x}_2, \bar{x}_2]$, then:
 - The range $x_1 + x_2$ for $x_1 + x_2$ is $[\underline{x}_1 + \underline{x}_2, \bar{x}_1 + \bar{x}_2]$.
 - The range $x_1 - x_2$ for $x_1 - x_2$ is $[\underline{x}_1 - \underline{x}_2, \bar{x}_1 - \bar{x}_2]$.
 - The range $x_1 \cdot x_2$ for $x_1 \cdot x_2$ is $[\underline{y}, \bar{y}]$, where
 \[
 \underline{y} = \min(x_1 \cdot x_2, \underline{x}_1 \cdot \bar{x}_2, \bar{x}_1 \cdot \underline{x}_2, \bar{x}_1 \cdot \bar{x}_2);
 \]
 \[
 \bar{y} = \max(x_1 \cdot x_2, \underline{x}_1 \cdot \bar{x}_2, \bar{x}_1 \cdot \underline{x}_2, \bar{x}_1 \cdot \bar{x}_2).
 \]
- The range $1/x_1$ for $1/x_1$ is $[1/\bar{x}_1, 1/\underline{x}_1]$ (if $0 \notin x_1$).
6. Interval Approach: Example

- Example: \(f(x) = (x - 2) \cdot (x + 2), \ x \in [1, 2]. \)

- How will the computer compute it?
 - \(r_1 := x - 2; \)
 - \(r_2 := x + 2; \)
 - \(r_3 := r_1 \cdot r_2. \)

- Main idea: do the same operations, but with **intervals** instead of **numbers**:
 - \(r_1 := [1, 2] - [2, 2] = [-1, 0]; \)
 - \(r_2 := [1, 2] + [2, 2] = [3, 4]; \)
 - \(r_3 := [-1, 0] \cdot [3, 4] = [-4, 0]. \)

- Actual range: \(f(x) = [-3, 0]. \)

- Comment: this is just a toy example, there are more efficient ways of computing an enclosure \(Y \supseteq y. \)
7. **Interval Computations: Analysis**

- *Computation time:* \(\leq 4 \) arithmetic operations per original operation, so \(O(T) \), where \(T \) is the running time of the original algorithm.

- *Result:* often, enclosure \(Y \supseteq y \) with excess width.

- *Reason:* there is a relation between intermediate results, and we ignore it in straightforward interval computations.

- *Alternative:* we can compute the exact range: e.g., Tarksi algorithm for algebraic \(f \).

- *Computation time:* can be exponential \(O(2^T) \).

- *Summarizing:* we have two algorithms:
 - a fast and efficient \(O(T) \) algorithm which often has large excess width;
 - a slow and inefficient (often non-feasible) algorithm with no excess width.

- *It is desirable:* to develop a sequence of feasible algorithms with:
 - longer and longer computation time and
 - smaller and smaller excess width.
8. Interval Computations: Limitations

- **Traditional interval computations:**
 - we know the intervals x_i of possible values of different parameters x_i, and
 - we assume that an arbitrary combination of these values is possible.
- **In geometric terms:** the set of possible combinations $x = (x_1, \ldots, x_n)$ is a box $x = x_1 \times \ldots \times x_n$.

- **In practice:** we also know additional restrictions on the possible combinations of x_i.
- **Example:** in geosciences, in addition to intervals for velocities v_i at different points, we know that $|v_i - v_j| \leq \Delta$ for neighboring points:

- **Example:** in nuclear engineering, experts often state that combinations of extreme values are impossible, we have an ellipsoid, not a box.
9. Similar Situation: Statistics

- Ideally, we should take into account dependence between all the variables.
- In the first approximation, it is often reasonable to consider them independent.
- In the next approximation, we consider pairwise dependencies.
- To get an even better picture, we can consider dependencies between triples, etc.
- As a result, we get a sequence of methods which:
 - require more and more time
 - but at the same time lead to more and more accurate results.
10. Let Us Use a Similar Idea for Interval Uncertainty

- Ideally, we should take the box \(x_1 \times \ldots \times x_n \) (or appropriate subset of the box), divide it into smaller boxes, estimate the range over each small box, and combine the results.

- This requires \(C^n \) subboxes – i.e., exponential time.

- In straightforward interval computations, we consider only intervals of possible values of \(x_i \).

- A natural next approximation is when we consider:
 - sets \(x_i \) of possible values of \(x_i \), and also
 - sets \(x_{ij} \) of possible pairs \((x_i, x_j)\).

- Third approximation: we also consider possible sets of triples, etc.

- As a result, we hope to get a sequence of methods which:
 - require more and more time
 - but at the same time lead to more and more accurate results.
11. How to Represent Sets

- **First idea:** do it in a way cumulative probability distributions (cdf) are represented in RiskCalc package: by discretization.

- In RiskCalc, we:
 - divide the interval $[0, 1]$ of possible values of probability into, say, 10 subintervals of equal width and
 - represent cdf $F(x)$ by 10 values x_1, \ldots, x_{10} at which $F(x_i) = i/10$.

- Similarly, we:
 - divide the box $x_i \times x_j$ into, say, 10×10 subboxes and
 - describe the set x_{ij} by listing all subboxes which contain possible pairs.

- **Comment:**
 - A more efficient idea is to represent this set by a covering paving – in the style of Jaulin et al. – i.e., consider boxes of different sizes starting with larger ones and only decrease the size when necessary.
 - It is also possible (and often efficient) to use ellipsoids.
12. How to Propagate This Uncertainty: A Problem

- In the beginning: we know the intervals \(r_1, \ldots, r_n \) corresponding to the input variables \(r_i = x_i \), and we know the sets \(r_{ij} \) for \(i, j \) from 1 to \(n \).

- Question: propagate this information through an intermediate computation step, a step of computing \(r_k = r_a \ast r_b \) for some arithmetic operation \(\ast \) and for previous results \(r_a \) and \(r_b \) (\(a, b < k \)).

- By the time we come to this step, we know the intervals \(r_i \) and the sets \(r_{ij} \) for \(i, j < k \).

- We want to find the interval \(r_k \) for \(x_k \), and the sets \(r_{ik} \) for \(i < k \).
13. How to Propagate This Uncertainty: An Idea

- First step: computing r_k:
 - In our representation, the set x_{ab} consists of small 2-D boxes $X_a \times X_b$.
 - For each small box $X_a \times X_b$, we use interval arithmetic to compute the range $X_a \ast X_b$ of the value $r_a \ast r_b$ over this box.
 - Then, we take the union (interval hull) of all these ranges.

- Second step: computing r_{ik}:
 - We consider the sets r_{ab}, r_{ai}, and r_{bi}.
 - For each small box $R_a \times R_b$ from r_{ab}, we:
 * consider all subintervals R_i for which $R_a \times R_i$ is in r_{ai} and $R_b \times R_i$ is in r_{bi}, and then
 * we add $(R_a \ast R_b) \times R_i$ to the set r_{ki}.
 - To be more precise:
 * since the interval $R_a \ast R_b$ may not have bounds of the type $p/10$,
 * we may need to expand it to get within bounds of the desired type.

- We repeat these computations step by step until we get the desired estimate for the range of the final result of the computations.
14. First Example: Computing the Range of $x - x$

- **Problem:**
 - for $f(x) = x - x$ on $[0, 1]$, the actual range is $[0, 0]$;
 - straightforward interval computations lead to an enclosure $[0, 1] - [0, 1] = [-1, 1]$.

- In straightforward interval computations:
 - we have $r_1 = x$ with interval $r_1 = [0, 1]$;
 - we have $r_2 = x$ with interval $x_2 = [0, 1]$;
 - the variables r_1 and r_2 are dependent, but we ignore this dependence.

- In the new approach: we have $r_1 = r_2 = [0, 1]$, and we also have r_{12}:

```
  +---+---+---+
  |   |   |   |   |
  | X | X | X |   |
  +---+---+---+
  |   |   |   |   |
  | X |   |   | X  |
  +---+---+---+
  |   |   |   | X  |
```

- For each small box, we have $[-0.2, 0.2]$, so the union is $[-0.2, 0.2]$.

- If we divide into more pieces, we get close to 0.
15. **Second Example: Computing the Range of** $x - x^2$

- In straightforward interval computations:
 - we have $r_1 = x$ with interval $r_1 = [0, 1]$;
 - we have $r_2 = x^2$ with interval $x_2 = [0, 1]$;
 - the variables r_1 and r_2 are dependent, but we ignore this dependence and estimate r_3 as $[0, 1] - [0, 1] = [-1, 1]$.

- In the new approach: we have $r_1 = r_2 = [0, 1]$, and we also have r_{12}:
 - the union of R^2_1 is $[0, 1]$, so we have $[0, 0.2]$, $[0.2, 0.4]$, etc.;
 - for $R_1 = [0, 0.2]$, we have $R^2_1 = [0, 0.04]$, so only $[0, 0.2]$ is affected;
 - for $R_1 = [0.2, 0.4]$, we have $R^2_1 = [0.04, 0.16]$, so only $[0, 0.2]$ is affected;
 - for $R_1 = [0.4, 0.6]$, we have $R^2_1 = [0.16, 0.25]$, so $[0, 0.2]$ and $[0.2, 0.4]$ are affected, etc.

- For each possible pair of small boxes $R_1 \times R_2$, we have $R_1 - R_2 = [-0.2, 0.2]$, $[0, 0.4]$ and $[0.2, 0.6]$, so the union of $R_1 - R_2$ is $r_3 = [-0.2, 0.6]$.

- If we divide into more pieces, we get closer to $[0, 0.25]$.
16. How to Compute r_{ik}

- Since $r_3 = [-0.2, 0.6]$, we divide this range into 5 subintervals $[-0.2, -0.04], [-0.04, 0.12], [0.12, 0.28], [0.28, 0.44], [0.44, 0.6]$.
- For $R_1 = [0, 0.2]$, the only possible R_2 is $[0, 0.2]$, so $R_1 - R_2 = [-0.2, 0.2]$. This covers $[-0.2, -0.04]$ and $[-0.04, 0.12]$.
- For $R_1 = [0.2, 0.4]$, the only possible R_2 is $[0, 0.2]$, so $R_1 - R_2 = [0, 0.4]$. This covers $[-0.04, 0.12], [0.12, 0.28]$, and $[0.28, 0.44]$.
- For $R_1 = [0.4, 0.6]$, we have two possible R_2:
 - for $R_2 = [0, 0.2]$, we have $R_1 - R_2 = [0.2, 0.6]$; this covers $[0.12, 0.28], [0.28, 0.44], [0.44, 0.6]$;
 - for $R_2 = [0.2, 0.4]$, we have $R_1 - R_2 = [0, 0.4]$; this covers $[-0.04, 0.12], [0.12, 0.28], [0.28, 0.44]$.
- For $R_1 = [0.6, 0.8]$, we have $R_1^2 = [0.36, 0.64]$, so three possible R_2: $[0.2, 0.4], [0.4, 0.6], [0.6, 0.8]$, to the total of $[0.2, 0.8]$. Here, $[0.6, 0.8] - [0.2, 0.8] = [-0.2, 0.6]$, so all 5 subintervals are affected.
- For $R_1 = [0.8, 1.0]$, we have $R_1^2 = [0.64, 1.0]$, so two possible R_2: $[0.6, 0.8]$ and $[0.8, 1.0]$, to the total of $[0.6, 1.0]$. Here, $[0.8, 1.0] - [0.6, 1.0] = [-0.2, 0.4]$, so the first 4 subintervals are affected.
17. **Distributivity:** $a \cdot (b + c) \text{ vs. } a \cdot b + a \cdot c$

- **Problem:** compute the range of $x_1 \cdot (x_2 + x_3) = x_1 \cdot x_2 + x_1 \cdot x_3$ when $x_1 \in x_1 = [0, 1]$, $x_2 = [1, 1]$, and $x_3 = [-1, -1]$.

- **Actual range:** we have $x_1 \cdot (x_2 + x_3) = 0$ for all possible x_i hence the actual range is $[0, 0]$.

- **Straightforward interval computations:**
 - for $x_1 \cdot (x_2 + x_3)$, we get $[0, 1] \cdot [0, 0] = [0, 0]$;
 - for $x_1 \cdot x_2 + x_1 \cdot x_3$, we get $[0, 1] \cdot 1 + [0, 1] \cdot (-1) = [0, 1] + [-1, 0] = [-1, 1]$, i.e., excess width.

- **Reason:** we have $r_4 = x_1 \cdot x_2$, $r_5 = x_1 \cdot x_3$, but we ignore the dependence between r_4 and r_5.

18. Distributivity: New Approach

- **Reminder:** \(r_4 = r_1 \cdot r_2, \ r_5 = r_1 \cdot r_3, \ r_6 = r_4 + r_5, \ r_1 = [0, 1], \ r_2 = 1, \ r_3 = -1. \)
- When we get \(r_4 = r_1 \cdot r_2 \), we compute the ranges \(r_{14}, r_{24}, \) and \(r_{34} \); the only non-trivial range is \(r_{14} \):

 \[
 \begin{array}{cccc}
 \times & & & \\
 & \times & & \\
 & & \times & \\
 \times & & & \\
 \end{array}
 \]

- For \(r_5 = r_1 \cdot r_3 \), we get \(r_5 = [-1, 0] \).
- To compute the range \(r_{45} \), for each possible box \(R_1 \times R_3 \), we:
 - consider all boxes \(R_4 \) for which \(R_4 \times R_1 \) is possible and \(R_4 \times R_3 \) is possible;
 - add \(R_4 \times (R_1 \cdot R_3) \) to the set \(r_{45} \).
- **Result:**

 \[
 \begin{array}{cccc}
 \times & & & \\
 & \times & & \\
 & & \times & \\
 \times & & & \\
 \end{array}
 \]

- Hence, for \(r_6 = r_4 + r_5 \), we get \([-0.2, 0.2] \).
- If we divide into more pieces, we get the enclosure closer to 0.
19. Toy Example with Prior Dependence

- **Case study:** find the range of \(r_1 - r_2 \) when \(r_1 = [0, 1] \), \(r_2 = [0, 1] \), and \(|r_1 - r_2| \leq 0.1\).

- **Actual range:** \([-0.1, 0.1]\).

- **Straightforward interval computations:** \([0, 1] - [0, 1] = [-1, 1]\).

- **New approach:**

 - First, we describe the constraint in terms of subboxes:

 \[
 \begin{array}{ccccccc}
 & & & & & & \\
 & & X & X & & & \\
 & X & X & X & & & \\
 X & X & X & X & & & \\
 X & X & X & X & & & \\
 X & X & X & X & & & \\
 \end{array}
 \]

 - Next, we compute \(R_1 - R_2 \) for all possible pairs and take the union.

- **Result:** \([-0.6, 0.6]\).

- If we divide into more pieces, we get the enclosure closer to \([-0.1, 0.1]\).
20. Computation Time

- **Straightforward interval computations:**
 - we need to compute T intervals $r_i, i = 1, \ldots, T$;
 - so, it requires $O(T)$ steps.

- **New idea:**
 - we need to compute T^2 sets $r_{ij}, i, j = 1, \ldots, T$;
 - so, it requires $O(T^2)$ steps.

- **Conclusion:**
 - the new method is longer than for straightforward interval computations, but
 - it is still feasible.
21. What Next?

- *Known fact:* the range estimation problem is, in general, NP-hard (even without any dependency between the inputs).

- *Corollary:* our quadratic time method cannot completely avoid excess width.

- To get better estimates, in addition to sets of pairs, we can also consider sets of *triples* r_{ijk}.

- This will be a T^3 time version of our approach.

- We can also go to *quadruples* etc.

- Similar ideas can be applied to the case when we also have partial information about probabilities.
22. **Probabilistic Case: In Brief**

- *Traditionally:* expert systems use technique similar to straightforward interval computations.
- We parse F and replace each computation step with corresponding probability operation.
- *Problem:* at each step, we ignore the dependence between the intermediate results F_j.
- *Result:* intervals are too wide (and numerical estimates off).
- *Example:* the estimate for $P(A \lor \neg A)$ is not 1.
- *Solution:* similarly to the above algorithm, besides $P(F_j)$, we also compute $P(F_j \land F_i)$ (or $P(F_{j_1} \land \ldots \land F_{j_k})$).
- On each step, use all combinations of l such probabilities to get new estimates.
- *Result:* e.g., $P(A \lor \neg A)$ is estimated as 1.
23. Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209,
- by NSF grant EAR-0225670,
- by NIH grant 3T34GM008048-20S1,
- by Army Research Lab grant DATM-05-02-C-0046,
- by Star Award from the University of Texas System,
- by Texas Department of Transportation grant No. 0-5453, and
- by the workshop organizers.

Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209,
- by NSF grant EAR-0225670,
- by NIH grant 3T34GM008048-20S1,
- by Army Research Lab grant DATM-05-02-C-0046,
- by Star Award from the University of Texas System,
- by Texas Department of Transportation grant No. 0-5453, and
- by the workshop organizers.