Decision Making under Uncertainty: Algorithmic Approach (brief overview of related UTEP research)

Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
vladik@utep.edu

http://www.cs.utep.edu/vladik
1. Quantitative Approach to Decision Making: Misunderstandings

- Researchers and practitioners in computer science usually start with the utility-based approach.

- Many humanities researchers believe that the utility-based approach is oversimplified and long discredited.

- Main reason: they consider an easy-to-dismiss caricature instead of the actual utility approach.

- In view of this widely spread misunderstanding, we first start by explaining the actual utility-based approach.

- Our main area of research is how to add uncertainty to the traditional approach.

- We concentrate on interval and fuzzy uncertain, emphasizing that “fuzzy” has a very precise meaning in CS.

- In this process, we provide examples of applications.
2. Decision Making: General Need and Traditional Approach

- To make a decision, we must:
 - find out the user’s preference, and
 - help the user select an alternative which is the best
 - according to these preferences.

- Traditional approach is based on an assumption that for each two alternatives A' and A'', a user can tell:
 - whether the first alternative is better for him/her; we will denote this by $A'' < A'$;
 - or the second alternative is better; we will denote this by $A' < A''$;
 - or the two given alternatives are of equal value to the user; we will denote this by $A' = A''$.
3. The Notion of Utility

- Under the above assumption, we can form a natural numerical scale for describing preferences.
- Let us select a very bad alternative A_0 and a very good alternative A_1.
- Then, most other alternatives are better than A_0 but worse than A_1.
- For every prob. $p \in [0, 1]$, we can form a lottery $L(p)$ in which we get A_1 w/prob. p and A_0 w/prob. $1 - p$.
- When $p = 0$, this lottery simply coincides with the alternative A_0: $L(0) = A_0$.
- The larger the probability p of the positive outcome increases, the better the result:
 \[p' < p'' \text{ implies } L(p') < L(p''). \]
4. The Notion of Utility (cont-d)

- Finally, for $p = 1$, the lottery coincides with the alternative A_1: $L(1) = A_1$.
- Thus, we have a continuous scale of alternatives $L(p)$ that monotonically goes from $L(0) = A_0$ to $L(1) = A_1$.
- Due to monotonicity, when p increases, we first have $L(p) < A$, then we have $L(p) > A$.
- The threshold value is called the utility of the alternative A:

 $$u(A) \overset{\text{def}}{=} \sup\{p : L(p) < A\} = \inf\{p : L(p) > A\}.$$

- Then, for every $\varepsilon > 0$, we have

 $$L(u(A) - \varepsilon) < A < L(u(A) + \varepsilon).$$

- We will describe such (almost) equivalence by \equiv, i.e., we will write that $A \equiv L(u(A))$.
5. Fast Iterative Process for Determining $u(A)$

- **Initially:** we know the values $\underline{u} = 0$ and $\bar{u} = 1$ such that $A \equiv L(u(A))$ for some $u(A) \in [\underline{u}, \bar{u}]$.

- **What we do:** we compute the midpoint u_{mid} of the interval $[\underline{u}, \bar{u}]$ and compare A with $L(u_{mid})$.

- **Possibilities:** $A \leq L(u_{mid})$ and $L(u_{mid}) \leq A$.

- **Case 1:** if $A \leq L(u_{mid})$, then $u(A) \leq u_{mid}$, so

$$u \in [\underline{u}, u_{mid}] .$$

- **Case 2:** if $L(u_{mid}) \leq A$, then $u_{mid} \leq u(A)$, so

$$u \in [u_{mid}, \bar{u}] .$$

- After each iteration, we decrease the width of the interval $[\underline{u}, \bar{u}]$ by half.

- After k iterations, we get an interval of width 2^{-k} which contains $u(A)$ – i.e., we get $u(A)$ w/accuracy 2^{-k}.
6. How to Make a Decision Based on Utility Values

• Suppose that we have found the utilities \(u(A'), u(A'') \), \(\ldots \), of the alternatives \(A', A'', \ldots \)

• Which of these alternatives should we choose?

• By definition of utility, we have:

 • \(A \equiv L(u(A)) \) for every alternative \(A \), and

 • \(L(p') < L(p'') \) if and only if \(p' < p'' \).

• We can thus conclude that \(A' \) is preferable to \(A'' \) if and only if \(u(A') > u(A'') \).

• In other words, we should always select an alternative with the largest possible value of utility.

• So, to find the best solution, we must solve the corresponding optimization problem.
7. Before We Go Further: Caution

- We are not claiming that people estimate probabilities when they make decisions: we know they often don’t.
- Our claim: when people make definite and consistent choices, these choices can be described by probabilities.
- Example: a falling rock does not solve equations but follows Newton’s equations \(ma = m \frac{d^2x}{dt^2} = -mg \).
- In practice, decisions are often not definite (uncertain) and not consistent.
- Inconsistency is one of the reasons why people make bad decisions (drugs, health hazards, speeding).
- People do choose \(A > B > C > A \); we need psychologists and sociologists to study and solve this problem.
- Uncertainty is what we concentrate on; see below.
8. How to Estimate Utility of an Action

- For each action, we usually know possible outcomes S_1, \ldots, S_n.
- We can often estimate the prob. p_1, \ldots, p_n of these outcomes.
- By definition of utility, each situation S_i is equiv. to a lottery $L(u(S_i))$ in which we get:
 - A_1 with probability $u(S_i)$ and
 - A_0 with the remaining probability $1 - u(S_i)$.
- Thus, the action is equivalent to a complex lottery in which:
 - first, we select one of the situations S_i with probability p_i: $P(S_i) = p_i$;
 - then, depending on S_i, we get A_1 with probability $P(A_1 \mid S_i) = u(S_i)$ and A_0 w/probability $1 - u(S_i)$.
9. How to Estimate Utility of an Action (cont-d)

- **Reminder:**
 - first, we select one of the situations S_i with probability p_i: $P(S_i) = p_i$;
 - then, depending on S_i, we get A_1 with probability $P(A_1 | S_i) = u(S_i)$ and A_0 w/probability $1 - u(S_i)$.

- The prob. of getting A_1 in this complex lottery is:

\[
P(A_1) = \sum_{i=1}^{n} P(A_1 | S_i) \cdot P(S_i) = \sum_{i=1}^{n} u(S_i) \cdot p_i.
\]

- In the complex lottery, we get:
 - A_1 with prob. $u = \sum_{i=1}^{n} p_i \cdot u(S_i)$, and
 - A_0 w/prob. $1 - u$.

- So, we should select the action with the largest value of expected utility $u = \sum p_i \cdot u(S_i)$.
10. **Subjective Probabilities**

- In practice, we often do not know the probabilities p_i of different outcomes.

- For each event E, a natural way to estimate its subjective probability is to fix a prize (e.g., 1) and compare:
 - the lottery ℓ_E in which we get the fixed prize if the event E occurs and 0 is it does not occur, with
 - a lottery $\ell(p)$ in which we get the same amount with probability p.

- Here, similarly to the utility case, we get a value $ps(E)$ for which, for every $\varepsilon > 0$:
 $$\ell(ps(E) - \varepsilon) < \ell_E < \ell(ps(E) + \varepsilon).$$

- Then, the utility of an action with possible outcomes S_1, \ldots, S_n is equal to $u = \sum_{i=1}^{n} ps(E_i) \cdot u(S_i)$.
11. Auxiliary Issue: Almost-Uniqueness of Utility

- The above definition of utility u depends on A_0, A_1.
- What if we use different alternatives A'_0 and A'_1?
- Every A is equivalent to a lottery $L(u(A))$ in which we get $A_1 \text{ w/prob. } u(A)$ and $A_0 \text{ w/prob. } 1 - u(A)$.
- For simplicity, let us assume that $A'_0 < A_0 < A_1 < A'_1$.
- Then, $A_0 \equiv L'(u'(A_0))$ and $A_1 \equiv L'(u'(A_1))$.
- So, A is equivalent to a complex lottery in which:
 1) we select $A_1 \text{ w/prob. } u(A)$ and $A_0 \text{ w/prob. } 1 - u(A)$;
 2) depending on A_i, we get $A'_1 \text{ w/prob. } u'(A_i)$ and $A'_0 \text{ w/prob. } 1 - u'(A_i)$.
- In this complex lottery, we get A'_1 with probability $u'(A) = u(A) \cdot (u'(A_1) - u'(A_0)) + u'(A_0)$.
- So, in general, utility is defined modulo an (increasing) linear transformation $u' = a \cdot u + b$, with $a > 0$.
12. Traditional Approach Summarized

- Traditional approach summarized:
 - we assume that we know possible actions, and
 - we assume that we know the exact consequences of each action;
 - then we should select an action with the largest value of expected utility.

- Similarly, when we have several participants:
 - we assume that we know the preferences of each participant,
 - then game theory provides us with reasonable solutions:
 * maximin for zero-sum games,
 * Nash bargaining solution, Nash equilibrium, or Shapley vector for cooperative games, etc.
13. Traditional Approach: Algorithmic Challenges

- In all these cases, we have a *well-defined* mathematical problem (e.g., an *optimization* problem).

- *Problem*: the existing algorithms run *too long* when the number of parameters increase.

- The first algorithmic challenge is to find *feasible* algorithms for solving these problems.

- *Case study*: security-related problems:
 - assigning air marshals to flights,
 - assigning security personnel to airport terminals, etc.

- Mathematically, solutions are known, but for thousands of flight, existing algorithms are inadequate.

- For these problems, Chris Kiekintveld developed new efficient algorithms, used by Homeland Security.
14. Need for Distributed Decision Making and the Resulting Algorithmic Challenges

- *Traditional approach:* we have a central decision maker.
- *In practice:* decisions are often made locally.
- *Challenge:* to operate efficiently, a distributed system needs a stable self-healing self-adjusting control.
- *Example:* Internet became possible only when Transmission Control Protocol (TCP) was invented.
- *Research direction* (E. Freudenthal): develop similar solutions for other systems.
- *Example 1:* transfer of medical information from patient-side sensors to patient-monitoring systems.
- *Example 2:* peer-to-peer communications, how to make sure that everyone contributes.
15. Need to Take Uncertainty into Account

- In the traditional approach, we assume that:
 - we know exactly which actions are possible,
 - we know the exact preferences of each participant,
 - we know the exact consequences of each action.

- Then, we have a constraint optimization problem.

- In reality:
 - we may not know exactly which actions are possible (i.e., we have “soft” constraints);
 - we only have partial information about the preferences; and
 - we only have partial information about consequences of each action.

- In this case, we face a problem of optimization and decision making under uncertainty.
16. Types of Uncertainty

- Ideally, for each quantity, we need to know:
 - which values are possible, and
 - how frequent are different possible values.
- So ideally, we should have probabilistic uncertainty.
- Sometimes, we only know the range \([x, \bar{x}]\) of possible values; in this case, we have interval uncertainty.
- Sometimes, we also know narrower bounds \([\underline{x}(\alpha), \overline{x}(\alpha)]\) valid with some degree of certainty \(\alpha\).
- Such family of nested intervals is known as a fuzzy set.
- The degree of certainty can be described, e.g., by a Likert scale.
- Sometimes, we also know a range \([\underline{p}, \overline{p}]\) of probabilities \(p\) (or of mean or variance).
17. Privacy-Motivated Additional Uncertainty

- **Problem:** we often do not know what causes different diseases, which treatment is most efficient.

- **Solution:** collect data about patients, look for patterns.

- **Specifics:** since we do not know a priori which patterns to look for, we need to try various hypotheses.

- **Problem:** if we allow arbitrary queries, we may be able to reveal individual records – thus violating privacy.

- **Example:** how far influence from Asarco?

- We try average until 1001 Robinson and until 1003 Robinson, so we get the exact data re 1003 Robinson.

- **Solution:** instead of storing the original data, store ranges, e.g., for age, 0 to 10, 10 to 20, etc.

- **Challenge** (L. Longpré) we need to process data and make decisions under this interval uncertainty.
18. Uncertainty Leads to Soft Constraints: Toy Example

- **Objective:** come to school on time.
- **At first glance:** precisely formulated problem.
- **Fact:** traffic jams happen.
- **In rare cases:** traffic jams can be up to an hour long.
- **Guaranteed solution:** leave home an hour earlier.
- **Problem:** wasting an hour every day.
- **Solution:** realize that “on time” is a soft constraint.
- **Specifically:** it is OK to be late one day a year—when everyone is late due to a traffic jam.
19. Uncertainty Leads to Soft Constraints

- **Case study** (Martine Ceberio): researchers design an innovative water filtering system.
- **Objective**: minimize energy use.
- **Constraints**: lower bound on the output, and physics-based constraints relating parameters.
- **At first glance**: there is no uncertainty, all physics-motivated constraints seem exact.
- **Surprise**: the constraints turned out to be inconsistent.
- **Reason**: relations are approximate (similar to using 3.14 instead of π).
- **Solution**: relax constraints, i.e., replace equalities with approximate equalities.
- **Algorithmic challenge**: to simplify computations, we need to minimize the number of relaxed constraints.
20. Uncertainty in Objective Function: A Problem

- **General case:** utility depends on the parameters x_1, \ldots, x_n:
 \[u = u(x_1, \ldots, x_n). \]

- **First approximation:** assume that the dependence is linear
 \[u = \sum_{i=1}^{n} c_i \cdot x_i. \]

- **In practice:** linear dependencies are usually only approximate ones.

- **Seemingly natural idea:** add quadratic (and higher order) terms
 \[u = \sum_{i=1}^{n} c_i \cdot x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot x_i \cdot x_j. \]

- **Fact:** the situation is often scale-invariant.

- **Example:** x_i are money, and preferences should not change if we use not dollars but Euros.

- **Problem:** quadratic preferences are not scale-invariant.
21. Uncertainty in Objective Function Leads to Non-Additive (Fuzzy) Measures

- **Problem** (reminder): quadratic preferences are not scale-invariant.

- **First idea**: use scale-invariant ordinal statistics
 \[
 x(1) \leq x(2) \leq \ldots \leq x(n),
 \]
 \[
 x(1) = \min(x_1, \ldots, x_n), \ldots, x(1) = \max(x_1, \ldots, x_n).
 \]

- **Resulting solution**: take \(u = \sum_{i=1}^{n} c_i \cdot x(i) \).

- **General scale-invariant expression**: can be described as an integral over a non-additive ("fuzzy") measure.

- **Successful case study** (M. Ceberio, X. Wang): how to describe software quality.

- **Result**: fuzzy measure-based approach better describes expert preferences.
22. Uncertainty in System Dynamics: Interval-Related Approach

- **Traditional approach**: dynamics is described by differential equations, like Newton’s equations
 \[
 \frac{d^2 x}{dt^2} = \frac{F}{m}.
 \]

- **Fact**: usually, we do not know the exact equations
 \[
 \dot{x} = f(x).
 \]

- **Possibility**: we only know the approximate equations, i.e., we know the ranges \([\underline{f}(x), \overline{f}(x)]\) for which
 \[
 \dot{x} \in [\underline{f}(x), \overline{f}(x)].
 \]

- **Solution** (B. Djafari-Rouhani): analyze such differential inequalities.
23. Uncertainty in System Dynamics: Symmetry Approach

- *One of the main objectives of science:* prediction.

- *Basis for prediction:* we observed similar situations in the past, and we expect similar outcomes.

- *In mathematical terms:* similarity corresponds to symmetry, and similarity of outcomes – to invariance.

- *Example:* we dropped the ball, it fall down.

- *Symmetries:* shift, rotation, etc.

- Symmetries are ubiquitous in modern physics:
 - starting with quarks, new theories are represented in terms of symmetries;
 - traditional physical theories (GRT, QM, Electrodynamics, etc.) can be described in symmetry terms.
24. Beyond Traditional Decision Making: Towards a More Realistic Description

- Previously, we assumed that a user can always decide which of the two alternatives A' and A'' is better:
 - either $A' < A''$,
 - or $A'' < A'$,
 - or $A' \equiv A''$.

- In practice, a user is sometimes unable to meaningfully decide between the two alternatives; denoted $A' \parallel A''$.

- In mathematical terms, this means that the preference relation:
 - is no longer a total (linear) order,
 - it can be a partial order.
25. From Utility to Interval-Valued Utility

- Similarly to the traditional decision making approach:
 - we select two alternatives $A_0 < A_1$ and
 - we compare each alternative A which is better than A_0 and worse than A_1 with lotteries $L(p)$.

- Since preference is a partial order, in general:

 \[u(A) \overset{\text{def}}{=} \sup\{p : L(p) < A\} < \bar{u}(A) \overset{\text{def}}{=} \inf\{p : L(p) > A\} \].

- For each alternative A, instead of a single value $u(A)$ of the utility, we now have an interval $[u(A), \bar{u}(A)]$ s.t.:
 - if $p < u(A)$, then $L(p) < A$;
 - if $p > \bar{u}(A)$, then $A < L(p)$; and
 - if $u(A) < p < \bar{u}(A)$, then $A \parallel L(p)$.

- We will call this interval the utility of the alternative A.
26. Interval-Valued Utility: Practical Consequences

• **Idea:** select alternative A with largest $u(A)$.

• As situation changes, we may change our selection.

• **Interval case:** for each alternative, we know the utility with some uncertainty Δ, i.e., we know $\tilde{u}(A)$ for which $u(A) \in [\tilde{u}(A) - \Delta, \tilde{u}(A) + \Delta]$.

• **Additional aspect:** there is usually a cost in change (e.g., a cost in reinvesting in different stocks).

• **Conclusion:** we only change from A to B if we are sure that $u(A) < u(B)$, i.e., when $\tilde{u}(A) + \Delta < \tilde{u}(B) + \Delta$.

• **Problem:** it is difficult to estimate Δ exactly.

• If we underestimate Δ, we make a lot of unnecessary changes ("mania").

• If we overestimate Δ, we miss good opportunities ("depression").
27. Symmetry Approach to decision Making Under Uncertainty: Examples

- What are the best locations of radiotelescopes forming a Very Large Baseline Interferometer (VLBI)?
- **Fact:** the optimal location depends on what objects we will observe.
- **Challenge:** we do not know what objects we will observe with the new VLBI system.
- **Environmental sciences:** what is the best location of a meteorological tower?
- **Fact:** the optimal location depends on subtle details of local weather patterns.
- **Challenge:** these patterns are exactly what we plan to determine with the new tower.
- In all these cases, *symmetry* helps.
Thanks for your attention!
28. Case Study

- **Objective:** select the best location of a sophisticated multi-sensor meteorological tower.

- **Constraints:** we have several criteria to satisfy.

- **Example:** the station should not be located too close to a road.

- **Motivation:** the gas flux generated by the cars do not influence our measurements of atmospheric fluxes.

- **Formalization:** the distance \(x_1 \) to the road should be larger than a threshold \(t_1 \): \(x_1 > t_1 \), or \(y_1 \overset{\text{def}}{=} x_1 - t_1 > 0 \).

- **Example:** the inclination \(x_2 \) at the tower’s location should be smaller than a threshold \(t_2 \): \(x_2 < t_2 \).

- **Motivation:** otherwise, the flux determined by this inclination and not by atmospheric processes.
29. General Case

- **In general**: we have several differences y_1, \ldots, y_n all of which have to be non-negative.

- For each of the differences y_i, the larger its value, the better.

- Our problem is a typical setting for *multi-criteria optimization*.

- A most widely used approach to multi-criteria optimization is *weighted average*, where
 - we assign weights $w_1, \ldots, w_n > 0$ to different criteria y_i and
 - select an alternative for which the weighted average
 \[w_1 \cdot y_1 + \ldots + w_n \cdot y_n \]
 attains the largest possible value.
30. Limitations of the Weighted Average Approach

- *In general*: the weighted average approach often leads to reasonable solutions of the multi-criteria problem.

- *In our problem*: we have an additional requirement – that all the values \(y_i \) must be positive. So:
 - when selecting an alternative with the largest possible value of the weighted average,
 - we must only compare solutions with \(y_i > 0 \).

- *We will show*: under the requirement \(y_i > 0 \), the weighted average approach is not fully satisfactory.

- *Conclusion*: we need to find a more adequate solution.
31. Limitations of the Weighted Average Approach: Details

- The values y_i come from measurements, and measurements are never absolutely accurate.
- The results \tilde{y}_i of the measurements are not exactly equal to the actual (unknown) values y_i.
- *If:* for some alternative $y = (y_1, \ldots, y_n)$
 - we measure the values y_i with higher and higher accuracy and,
 - based on the measurement results \tilde{y}_i, we conclude that y is better than some other alternative y'.
- *Then:* we expect that the actual alternative y is indeed better than y' (or at least of the same quality).
- Otherwise, we will not be able to make any meaningful conclusions based on real-life measurements.
The Above Natural Requirement Is Not Always Satisfied for Weighted Average

- **Simplest case:** two criteria \(y_1 \) and \(y_2 \), w/ weights \(w_i > 0 \).
- If \(y_1, y_2, y'_1, y'_2 > 0 \), and \(w_1 \cdot y_1 + w_2 \cdot y_2 > w_1 \cdot y'_1 + w_2 \cdot y'_2 \), then \(y = (y_1, y_2) \succ y' = (y'_1, y'_2) \).
- If \(y_1 > 0, y_2 > 0 \), and at least one of the values \(y'_1 \) and \(y'_2 \) is non-positive, then \(y = (y_1, y_2) \succ y' = (y'_1, y'_2) \).
- Let us consider, for every \(\varepsilon > 0 \), the tuple
 \[y(\varepsilon) \triangleq (\varepsilon, 1 + \frac{w_1}{w_2}) \]
 and \(y' = (1, 1) \).
- In this case, for every \(\varepsilon > 0 \), we have
 \[w_1 \cdot y_1(\varepsilon) + w_2 \cdot y_2(\varepsilon) = w_1 \cdot \varepsilon + w_2 + w_2 \cdot \frac{w_1}{w_2} = w_1 \cdot (1 + \varepsilon) + w_2 \]
 and \(w_1 \cdot y'_1 + w_2 \cdot y'_2 = w_1 + w_2 \), hence \(y(\varepsilon) \succ y' \).
- However, in the limit \(\varepsilon \to 0 \), we have \(y(0) = \left(0, 1 + \frac{w_1}{w_2}\right)\), with \(y(0)_1 = 0 \) and thus, \(y(0) \prec y' \).
33. Towards a Precise Description

- Each alternative is characterized by a tuple of \(n \) positive values \(y = (y_1, \ldots, y_n) \).
- Thus, the set of all alternatives is the set \((R^+)^n\) of all the tuples of positive numbers.
- For each two alternatives \(y \) and \(y' \), we want to tell whether

 - \(y \) is better than \(y' \) (we will denote it by \(y \succ y' \) or \(y' \prec y \)),
 - or \(y' \) is better than \(y \) (\(y' \succ y \)),
 - or \(y \) and \(y' \) are equally good (\(y' \sim y \)).

- *Natural requirement:* if \(y \) is better than \(y' \) and \(y' \) is better than \(y'' \), then \(y \) is better than \(y'' \).
- The relation \(\succ \) must be transitive.
34. Towards a Precise Description (cont-d)

- **Reminder:** the relation \succ must be transitive.

- Similarly, the relation \sim must be transitive, symmetric, and reflexive ($y \sim y$), i.e., be an equivalence relation.

- **An alternative description:** a transitive pre-ordering relation $a \succeq b \iff (a \succ b \lor a \sim b)$ s.t. $a \succeq b \lor b \succeq a$.

- Then, $a \sim b \iff (a \succeq b) \& (b \succeq a)$, and

 $a \succ b \iff (a \succeq b) \& (b \not\preceq a)$.

- **Additional requirement:**

 - if each criterion is better,

 - then the alternative is better as well.

- **Formalization:** if $y_i > y'_i$ for all i, then $y \succ y'$.
35. **Scale Invariance: Motivation**

- **Fact**: quantities y_i describe completely different physical notions, measured in completely different units.

- **Examples**: wind velocities measured in m/s, km/h, mi/h; elevations in m, km, ft.

- Each of these quantities can be described in many different units.

- A priori, we do not know which units match each other.

- Units used for measuring different quantities may not be exactly matched.

- It is reasonable to require that:

 - if we simply change the units in which we measure each of the corresponding n quantities,

 - the relations \succ and \sim between the alternatives $y = (y_1, \ldots, y_n)$ and $y' = (y'_1, \ldots, y'_n)$ do not change.
36. Scale Invariance: Towards a Precise Description

- **Situation:** we replace:
 - a unit in which we measure a certain quantity \(q \)
 - by a new measuring unit which is \(\lambda > 0 \) times smaller.

- **Result:** the numerical values of this quantity increase by a factor of \(\lambda \): \(q \rightarrow \lambda \cdot q \).

- **Example:** 1 cm is \(\lambda = 100 \) times smaller than 1 m, so the length \(q = 2 \) becomes \(\lambda \cdot q = 2 \cdot 100 = 200 \) cm.

- Then, scale-invariance means that for all \(y, y' \in (R^+)^n \) and for all \(\lambda_i > 0 \), we have
 - \(y = (y_1, \ldots, y_n) \succ y' = (y'_1, \ldots, y'_n) \) implies \((\lambda_1 \cdot y_1, \ldots, \lambda_n \cdot y_n) \succ (\lambda_1 \cdot y'_1, \ldots, \lambda_n \cdot y'_n) \),
 - \(y = (y_1, \ldots, y_n) \sim y' = (y'_1, \ldots, y'_n) \) implies \((\lambda_1 \cdot y_1, \ldots, \lambda_n \cdot y_n) \sim (\lambda_1 \cdot y'_1, \ldots, \lambda_n \cdot y'_n) \).
37. Formal Description

- By a total pre-ordering relation on a set Y, we mean
 - a pair of a transitive relation \succ and an equivalence relation \sim for which,
 - for every $y, y' \in Y$, exactly one of the following relations hold: $y \succ y'$, $y' \succ y$, or $y \sim y'$.

- We say that a total pre-ordering is non-trivial if there exist y and y' for which $y \succ y'$.

- We say that a total pre-ordering relation on $(\mathbb{R}^+)^n$ is:
 - monotonic if $y'_i > y_i$ for all i implies $y' \succ y$;
 - continuous if
 * whenever we have a sequence $y^{(k)}$ of tuples for which $y^{(k)} \succeq y'$ for some tuple y', and
 * the sequence $y^{(k)}$ tends to a limit y,
 * then $y \succeq y'$.
38. Main Result

Theorem. Every non-trivial monotonic scale-inv. continuous total pre-ordering relation on \((R^+)^n\) has the form:

\[y' = (y'_1, \ldots, y'_n) > y = (y_1, \ldots, y_n) \iff \prod_{i=1}^{n} (y'_i)^{\alpha_i} > \prod_{i=1}^{n} y_i^{\alpha_i}; \]

\[y' = (y'_1, \ldots, y'_n) \sim y = (y_1, \ldots, y_n) \iff \prod_{i=1}^{n} (y'_i)^{\alpha_i} = \prod_{i=1}^{n} y_i^{\alpha_i}, \]

for some constants \(\alpha_i > 0\).

Comment: Vice versa,

- for each set of values \(\alpha_1 > 0, \ldots, \alpha_n > 0\),
- the above formulas define a monotonic scale-invariant continuous pre-ordering relation on \((R^+)^n\).
39. **Practical Conclusion**

- **Situation:**
 - we need to select an alternative;
 - each alternative is characterized by characteristics y_1, \ldots, y_n.

- **Traditional approach:**
 - we assign the weights w_i to different characteristics;
 - we select the alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot y_i$.

- **New result:** it is better to select an alternative with the largest value of $\prod_{i=1}^{n} y_i^{w_i}$.

- **Equivalent reformulation:** select an alternative with the largest value of $\sum_{i=1}^{n} w_i \cdot \ln(y_i)$.
40. Multi-Agent Cooperative Decision Making

- **How to describe preferences**: for each participant P_i, we can determine the utility $u_{ij} \overset{\text{def}}{=} u_i(A_j)$ of all A_j.

- **Question**: how to transform these utilities into a reasonable group decision rule?

- **Solution**: was provided by another future Nobelist John Nash.

- **Nash’s assumptions**:
 - symmetry,
 - independence from irrelevant alternatives, and
 - *scale invariance* – under replacing function $u_i(A)$ with an equivalent function $a \cdot u_i(A)$,
41. Nash’s Bargaining Solution (cont-d)

- **Nash’s assumptions (reminder):**
 - symmetry,
 - independence from irrelevant alternatives, and
 - scale invariance.

- **Nash’s result:**
 - the only group decision rule satisfying all these assumptions
 - is selecting an alternative A for which the product
 \[\prod_{i=1}^{n} u_i(A) \] is the largest possible.

- **Comment.** the utility functions must be “scaled” s.t. the “status quo” situation $A^{(0)}$ has utility 0:
 \[u_i(A) \rightarrow u'_i(A) \overset{\text{def}}{=} u_i(A) - u_i(A^{(0)}). \]
42. Interval-Valued Utilities and Interval-Valued Subjective Probabilities

- To feasibly elicit the values \(u(A) \) and \(\overline{u}(A) \), we:
 1) starting w/\([u, \overline{u}] = [0, 1]\), bisect an interval s.t. \(L(u) < A < L(\overline{u}) \) until we find \(u_0 \) s.t. \(A \parallel L(u_0) \);
 2) by bisecting an interval \([u, u_0]\) for which \(L(u) < A \parallel L(u_0) \), we find \(u(A) \);
 3) by bisecting an interval \([u_0, \overline{u}]\) for which \(L(u_0) \parallel A < L(\overline{u}) \), we find \(\overline{u}(A) \).

- Similarly, when we estimate the probability of an event \(E \):
 - we no longer get a single value \(ps(E) \);
 - we get an interval \([ps(E), \overline{ps}(E)]\) of possible values of probability.

- By using bisection, we can feasibly elicit the values \(ps(E) \) and \(\overline{ps}(E) \).
43. Decision Making Under Interval Uncertainty

- **Situation:** for each possible decision \(d\), we know the interval \([\underline{u}(d), \overline{u}(d)]\) of possible values of utility.

- **Questions:** which decision shall we select?

- **Natural idea:** select all decisions \(d_0\) that *may* be optimal, i.e., which are optimal for some function
 \[u(d) \in [\underline{u}(d), \overline{u}(d)].\]

- **Problem:** checking all possible functions is not feasible.

- **Solution:** the above condition is equivalent to an easier-to-check one:
 \[\overline{u}(d_0) \geq \max_d u(d).\]

- **Interval computations** can help in describing the range of all such \(d_0\).

- **Remaining problem:** in practice, we would like to select *one* decision; which one should be select?
44. Need for Definite Decision Making

- *At first glance:* if $A' \parallel A''$, it does not matter whether we recommend alternative A' or alternative A''.
- Let us show that this is *not* a good recommendation.
- E.g., let A be an alternative about which we know nothing, i.e., $[u(A), \bar{u}(A)] = [0, 1]$.
- In this case, A is indistinguishable both from a "good" lottery $L(0.999)$ and a "bad" lottery $L(0.001)$.
- Suppose that we recommend, to the user, that A is equivalent both to $L(0.999)$ and to $L(0.001)$.
- Then this user will feel comfortable:
 - first, exchanging $L(0.999)$ with A, and
 - then, exchanging A with $L(0.001)$.
- So, following our recommendations, the user switches from a very good alternative to a very bad one.
45. Need for Definite Decision Making (cont-d)

- The above argument does not depend on the fact that we assumed complete ignorance about A:
 - every time we recommend that the alternative A is “equivalent” both to $L(p)$ and to $L(p')$ ($p < p'$),
 - we make the user vulnerable to a similar switch from a better alternative $L(p')$ to a worse one $L(p)$.
- Thus, there should be only a single value p for which A can be reasonably exchanged with $L(p)$.
- In precise terms:
 - we start with the utility interval $[u(A), \bar{u}(A)]$, and
 - we need to select a single $u(A)$ for which it is reasonable to exchange A with a lottery $L(u)$.
- How can we find this value $u(A)$?
46. Decisions under Interval Uncertainty: Hurwicz Optimism-Pessimism Criterion

- **Reminder**: we need to assign, to each interval \([u, \bar{u}]\), a utility value \(u(u, \bar{u}) \in [u, \bar{u}]\).

- **History**: this problem was first handled in 1951, by the future Nobelist Leonid Hurwicz.

- **Notation**: let us denote \(\alpha_H^{\text{def}} = u(0, 1)\).

- **Reminder**: utility is determined modulo a linear transformation \(u' = a \cdot u + b\).

- **Reasonable to require**: the equivalent utility does not change with re-scaling: for \(a > 0\) and \(b\),

\[
u(a \cdot u^- + b, a \cdot u^+ + b) = a \cdot u(u^-, u^+) + b.
\]

- For \(u^- = 0, u^+ = 1, a = \bar{u} - u, \) and \(b = u,\) we get

\[
u(u, \bar{u}) = \alpha_H \cdot (\bar{u} - u) + u = \alpha_H \cdot \bar{u} + (1 - \alpha_H) \cdot u.
\]
47. Hurwicz Optimism-Pessimism Criterion (cont)

- The expression $\alpha_H \cdot \bar{u} + (1 - \alpha_H) \cdot u$ is called optimism-pessimism criterion, because:
 - when $\alpha_H = 1$, we make a decision based on the most optimistic possible values $u = \bar{u}$;
 - when $\alpha_H = 0$, we make a decision based on the most pessimistic possible values $u = u$;
 - for intermediate values $\alpha_H \in (0, 1)$, we take a weighted average of the optimistic and pessimistic values.

- According to this criterion:
 - if we have several alternatives A', \ldots, with interval-valued utilities $[\underline{u}(A'), \bar{u}(A')], \ldots$,
 - we recommend an alternative A that maximizes
 $$\alpha_H \cdot \bar{u}(A) + (1 - \alpha_H) \cdot u(A).$$
48. Which Value \(\alpha_H \) Should We Choose? An Argument in Favor of \(\alpha_H = 0.5 \)

- Let us take an event \(E \) about which we know nothing.
- For a lottery \(L^+ \) in which we get \(A_1 \) if \(E \) and \(A_0 \) otherwise, the utility interval is \([0, 1]\).
- Thus, the equiv. utility of \(L^+ \) is \(\alpha_H \cdot 1 + (1 - \alpha_H) \cdot 0 = \alpha_H \).
- For a lottery \(L^- \) in which we get \(A_0 \) if \(E \) and \(A_1 \) otherwise, the utility is \([0, 1]\), so equiv. utility is also \(\alpha_H \).
- For a complex lottery \(L \) in which we select either \(L^+ \) or \(L^- \) with probability 0.5, the equiv. utility is still \(\alpha_H \).
- On the other hand, in \(L \), we get \(A_1 \) with probability 0.5 and \(A_0 \) with probability 0.5.
- Thus, \(L = L(0.5) \) and hence, \(u(L) = 0.5 \).
- So, we conclude that \(\alpha_H = 0.5 \).
49. Which Action Should We Choose?

- Suppose that an action has \(n \) possible outcomes \(S_1, \ldots, S_n \), with utilities \([u(S_i), \overline{u}(S_i)]\), and probabilities \([p_i, \overline{p}_i]\).
- We know that each alternative is equivalent to a simple lottery with utility \(u_i = \alpha_H \cdot \overline{u}(S_i) + (1 - \alpha_H) \cdot u(S_i) \).
- We know that for each \(i \), the \(i \)-th event is equivalent to \(p_i = \alpha_H \cdot \overline{p}_i + (1 - \alpha_H) \cdot p_i \).
- Thus, this action is equivalent to a situation in which we get utility \(u_i \) with probability \(p_i \).
- The utility of such a situation is equal to \(\sum_{i=1}^{n} p_i \cdot u_i \).
- Thus, the equivalent utility of the original action is equivalent to

\[
\sum_{i=1}^{n} \left(\alpha_H \cdot \overline{p}_i + (1 - \alpha_H) \cdot p_i \right) \cdot \left(\alpha_H \cdot \overline{u}(S_i) + (1 - \alpha_H) \cdot u(S_i) \right)
\]
50. Observation: the Resulting Decision Depends on the Level of Detail

- Let us consider a situation in which, with some prob. \(p \), we gain a utility \(u \), else we get 0.
- The expected utility is \(p \cdot u + (1 - p) \cdot 0 = p \cdot u \).
- Suppose that we only know the intervals \([u, \bar{u}]\) and \([\underline{p}, \bar{p}]\).
- The equivalent utility \(u_k \) (\(k \) for know) is
 \[
 u_k = (\alpha_H \cdot \bar{p} + (1 - \alpha_H) \cdot \underline{p}) \cdot (\alpha_H \cdot \bar{u} + (1 - \alpha_H) \cdot u).
 \]
- If we only know that utility is from \([\underline{p} \cdot u, \bar{p} \cdot \bar{u}]\), then:
 \[
 u_d = \alpha_H \cdot \bar{p} \cdot \bar{u} + (1 - \alpha_H) \cdot \underline{p} \cdot u \quad (d \text{ for } \text{don’t know}).
 \]
- Here, additional knowledge decreases utility:
 \[
 u_d - u_k = \alpha_H \cdot (1 - \alpha_H) \cdot (\bar{p} - \underline{p}) \cdot (\bar{u} - u) > 0.
 \]
- (This is maybe what the Book of Ecclesiastes meant by “For with much wisdom comes much sorrow”?)
51. Beyond Interval Uncertainty: Partial Info about Probabilities

- *Frequent situation:*
 - in addition to x_i,
 - we may also have *partial* information about the probabilities of different values $x_i \in x_i$.

- An *exact* probability distribution can be described, e.g., by its cumulative distribution function
 $$F_i(z) = \text{Prob}(x_i \leq z).$$

- A *partial* information means that instead of a single cdf, we have a class \mathcal{F} of possible cdfs.

- *p-box* (Scott Ferson):
 - for every z, we know an interval $\mathbf{F}(z) = [F(z), \overline{F}(z)]$;
 - we consider all possible distributions for which, for all z, we have $F(z) \in \mathbf{F}(z)$.
52. Describing Partial Info about Probabilities: Decision Making Viewpoint

- **Problem:** there are many ways to represent a probability distribution.
- **Idea:** look for an objective.
- **Objective:** make decisions $E_x[u(x, a)] \rightarrow \max_a$.
- **Case 1:** smooth $u(x)$.
 - **Analysis:** we have $u(x) = u(x_0) + (x - x_0) \cdot u'(x_0) + \ldots$.
 - **Conclusion:** we must know moments to estimate $E[u]$.
- **Case of uncertainty:** interval bounds on moments.
- **Case 2:** threshold-type $u(x)$ (e.g., regulations).
 - **Conclusion:** we need cdf $F(x) = \text{Prob}(\xi \leq x)$.
- **Case of uncertainty:** p-box $[\underline{F}(x), \overline{F}(x)]$.
53. Multi-Agent Decision Making under Interval Uncertainty

- **Reminder**: if we set utility of status quo to 0, then we select an alternative A that maximizes
 $$u(A) = \prod_{i=1}^{n} u_i(A).$$

- **Case of interval uncertainty**: we only know intervals $[u_i(A), \bar{u}_i(A)]$.

- **First idea**: find all A_0 for which $\bar{u}(A_0) \geq \max_A u(A)$, where
 $$[u(A), \bar{u}(A)] \overset{\text{def}}{=} \prod_{i=1}^{n} [u_i(A), \bar{u}_i(A)].$$

- **Second idea**: maximize $u^{\text{equiv}}(A) \overset{\text{def}}{=} \prod_{i=1}^{n} u_i^{\text{equiv}}(A)$.

- **Interesting aspect**: when we have a conflict situation (e.g., in security games).
54. Beyond Optimization

- **Traditional interval computations:**
 - we know the intervals X_1, \ldots, X_n containing x_1, \ldots, x_n;
 - we know that a quantity z depends on $x = (x_1, \ldots, x_n)$:
 $$z = f(x_1, \ldots, x_n);$$
 - we want to find the range Z of possible values of z:
 $$Z = \left[\min_{x \in X} f(x), \max_{x \in X} f(x) \right].$$

- **Control situations:**
 - the value $z = f(x, u)$ also depends on the control variables $u = (u_1, \ldots, u_m)$;
 - we want to find Z for which, for every $x_i \in X_i$, we can get $z \in Z$ by selecting appropriate $u_j \in U_j$:
 $$\forall x \exists u \left(z = f(x, u) \in Z \right).$$
55. Reformulation in Logical Terms – of Modal Intervals

- **Reminder:** we want \(\forall x \in X \; \exists u \in U \; (f(x, u) \in Z) \).
- There is a logical difference between intervals \(X \) and \(U \).
- The property \(f(x, u) \in Z \) must hold
 - for all possible values \(x_i \in X_i \), but
 - for some values \(u_j \in U_j \).
- We can thus consider pairs of intervals and quantifiers (modal intervals):
 - each original interval \(X_i \) is a pair \(\langle X_i, \forall \rangle \), while
 - controlled interval is a pair \(\langle U_j, \exists \rangle \).
- We can treat the resulting interval \(Z \) as the range defined over modal intervals:
 \[
 Z = f(\langle X_1, \forall \rangle, \ldots, \langle X_n, \forall \rangle, \langle U_1, \exists \rangle, \ldots, \langle U_m, \exists \rangle).
 \]
56. Even Further Beyond Optimization

- In more complex situations, we need to go beyond control.
- For example, in the presence of an adversary, we want to make a decision \(x \) such that:
 - for every possible reaction \(y \) of an adversary,
 - we will be able to make a next decision \(x' \) (depending on \(y \))
 - so that after every possible next decision \(y' \) of an adversary,
 - the resulting state \(s(x, y, x', y') \) will be in the desired set:
 \[
 \forall y \exists x' \forall y' (s(x, y, x', y') \in S).
 \]
- In this case, we arrive at general Shary’s classes.
57. Proof of Symmetry Result: Part 1

- Due to scale-invariance, for every \(y_1, \ldots, y_n, y'_1, \ldots, y'_n \), we can take \(\lambda_i = \frac{1}{y_i} \) and conclude that

\[
(y'_1, \ldots, y'_n) \sim (y_1, \ldots, y_n) \iff \left(\frac{y'_1}{y_1}, \ldots, \frac{y'_n}{y_n} \right) \sim (1, \ldots, 1).
\]

- Thus, to describe the equivalence relation \(\sim \), it is sufficient to describe \(\{ z = (z_1, \ldots, z_n) : z \sim (1, \ldots, 1) \} \).

- Similarly,

\[
(y'_1, \ldots, y'_n) \succ (y_1, \ldots, y_n) \iff \left(\frac{y'_1}{y_1}, \ldots, \frac{y'_n}{y_n} \right) \succ (1, \ldots, 1).
\]

- Thus, to describe the ordering relation \(\succ \), it is sufficient to describe the set \(\{ z = (z_1, \ldots, z_n) : z \succ (1, \ldots, 1) \} \).

- Similarly, it is also sufficient to describe the set

\[
\{ z = (z_1, \ldots, z_n) : (1, \ldots, 1) \succ z \}.
\]
58. Proof of Symmetry Result: Part 2

- **To simplify:** take logarithms $Y_i = \ln(y_i)$, and sets

 $S_\sim = \{ Z : z = (\exp(Z_1), \ldots, \exp(Z_n)) \sim (1, \ldots, 1) \}$,

 $S_\succ = \{ Z : z = (\exp(Z_1), \ldots, \exp(Z_n)) \succ (1, \ldots, 1) \}$;

 $S_\prec = \{ Z : (1, \ldots, 1) \succ z = (\exp(Z_1), \ldots, \exp(Z_n)) \}$.

- Since the pre-ordering relation is total, for Z, either $Z \in S_\sim$ or $Z \in S_\succ$ or $Z \in S_\prec$.

- **Lemma:** S_\sim is closed under addition:

 - $Z \in S_\sim$ means $(\exp(Z_1), \ldots, \exp(Z_n)) \sim (1, \ldots, 1)$;

 - due to scale-invariance, we have

 $(\exp(Z_1 + Z'_1), \ldots) = (\exp(Z_1) \cdot \exp(Z'_1), \ldots) \sim (\exp(Z'_1), \ldots)$;

 - also, $Z' \in S_\sim$ means $(\exp(Z'_1), \ldots) \sim (1, \ldots, 1)$;

 - since \sim is transitive,

 $(\exp(Z_1 + Z'_1), \ldots) \sim (1, \ldots)$ so $Z + Z' \in S_\sim$.

59. Proof of Symmetry Result: Part 3

- **Reminder:** the set S_\sim is closed under addition;
- Similarly, S_\prec and S_\succ are closed under addition.
- **Conclusion:** for every integer $q > 0$:
 - if $Z \in S_\sim$, then $q \cdot Z \in S_\sim$;
 - if $Z \in S_\succ$, then $q \cdot Z \in S_\succ$;
 - if $Z \in S_\prec$, then $q \cdot Z \in S_\prec$.
- Thus, if $Z \in S_\sim$ and $q \in N$, then $(1/q) \cdot Z \in S_\sim$.
- We can also prove that S_\sim is closed under $Z \rightarrow -Z$:
 - $Z = (Z_1, \ldots) \in S_\sim$ means $(\exp(Z_1), \ldots) \sim (1, \ldots)$;
 - by scale invariance, $(1, \ldots) \sim (\exp(-Z_1), \ldots)$, i.e., $-Z \in S_\sim$.
- Similarly, $Z \in S_\succ \Leftrightarrow -Z \in S_\prec$.
- So $Z \in S_\sim \Rightarrow (p/q) \cdot Z \in S_\sim$; in the limit, $x \cdot Z \in S_\sim$.

Quantitative...
The Notion of Utility
Traditional Approach...
Need for Distributed...
Privacy-Motivated...
Uncertainty Leads to...
Uncertainty in...
Uncertainty in System...
Symmetry Approach...
Home Page
Title Page
Previous
Next
Go Back
Full Screen
Close
Quit
Page 61 of 62
60. Proof of Symmetry Result: Final Part

• **Reminder:** S_\sim is closed under addition and multiplication by a scalar, so it is a linear space.

• **Fact:** S_\sim cannot have full dimension n, since then all alternatives will be equivalent to each other.

• **Fact:** S_\sim cannot have dimension $< n - 1$, since then:
 - we can select an arbitrary $Z \in S_\prec$;
 - connect it w/ $-Z \in S_\succ$ by a path γ that avoids S_\sim;
 - due to closeness, $\exists \gamma(t^*)$ in the limit of S_\succ and S_\prec;
 - thus, $\gamma(t^*) \in S_\sim$ – a contradiction.

• Every $(n - 1)$-dim lin. space has the form $\sum_{i=1}^{n} \alpha_i \cdot Y_i = 0$.

• Thus, $Y \in S_\succ \iff \sum \alpha_i \cdot Y_i > 0$, and
 $$y \succ y' \iff \sum \alpha_i \cdot \ln(y_i/y'_i) > 0 \iff \prod y_i^{\alpha_i} > \prod y'_i^{\alpha_i}.$$