Data Processing in the Presence of Interval Uncertainty and Erroneous Measurements: Practical Problems, Results, Challenges

M. Ceberio, O. Kosheleva, V. Kreinovich, G. R. Keller, R. Araiza, M. Averill, and G. Xiang
University of Texas at El Paso, 500 W. University
El Paso, TX 79968, USA, olgak@utep.edu
1. Formulation of the Problem

- There are *two main reasons* why measurement results differ from the actual values of the measured quantities:

- There is a *small* difference caused by the inaccuracy of the measuring instrument.

- This inaccuracy is characterized by *probabilistic* or *interval* uncertainty.

- Sometimes, due to an instrument malfunction or a human error, we get an erroneous measurement result (outlier) that is *drastically* different from the actual value.

- This uncertainty is usually characterized by a *proportion* of measurement results that could be erroneous (e.g., ≤ 1%).

- *Situation:* most data processing algorithms based on interval computations only take into account the first type of uncertainty.

- *Problem:* take the presence of erroneous measurements into account as well.
2. Sometimes, It Is Relatively Easy to Detect Outliers

- In some cases, when the data is smooth, we can (rather easily) detect the corresponding outliers.

- *Traditional engineering approach:* a new measurement result x is classified as an outlier if $x \not\in [L, U]$, where

$$ L \overset{\text{def}}{=} E - k_0 \cdot \sigma, \quad U \overset{\text{def}}{=} E + k_0 \cdot \sigma, $$

and $k_0 > 1$ is pre-selected (most frequently, $k_0 = 2, 3,$ or 6).

- *Minor problem:* in some practical situations, we only have intervals $x_i = [x_i^L, x_i^U]$.

- For different values $x_i \in x_i$, we get different k_0-sigma intervals $[L, U]$.

- A value x is a guaranteed outlier if $x \not\in [L, U]$.

- *Conclusion:* to detect outliers, we must know the ranges of $L = E - k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.

- *Good news:* there exist algorithm for computing these ranges.

- *Not so good news:* in many practical situations, e.g., in non-destructive testing (NDT) of aeroplanes and roads, and in geophysical analysis, we are actually interested in unusual non-smooth data points.

- *Problem:* separating correct but unusual measurement results from the erroneous measurement results is a challenge.
3. Presence of Erroneous Measurements Make Problems Computationally Difficult

- **Known fact:** the presence of outliers turns easy-to-solve interval problems into difficult-to-solve (NP-hard) ones.

- **New result:** this difficulty may appear even without interval uncertainty.

- **Situation:** we know how the measured quantity \(y \) is related to the desired parameters \(x_j \).

- **Simplest case:** linear dependence, i.e., \(\sum_{j=1}^{n} a_{ij} \cdot x_j = y_i \), where \(y_i \) is the result of \(i \)-th measurement, and \(a_{ij} \) are (known) parameters corresponding to \(i \)-th measurement.

- **Problem:** given \(a_{ij} \), \(y_i \), and \(\varepsilon \in (0, 1) \), and constraints

\[
\sum_{j=1}^{n} a_{ij} \cdot x_j = y_i, \quad i = 1, \ldots, N
\]

check whether we can select a consistent set of \(N \cdot (1 - \varepsilon) \) constraints.
4. Result: The Problem Is NP-hard Even for the Linear Case

- **Idea**: reduce to a known NP-hard problem.

- **Subset sum**: given positive integers \(s_1, \ldots, s_n\), and \(s\), check whether \(s = \sum_{i=1}^{n} x_i \cdot s_i\) for some \(x_i \in \{0, 1\}\).

- **Reduction**: \(N = n/\varepsilon\) constraints:

 - 2\(n\) constraints \(x_1 = 0, x_1 = 1 \ldots, x_n = 0, x_n = 1\);

 - \(N - 2n\) identical constraints \(\sum s_i \cdot x_i = s\).

- Since \(0 \neq 1\), at most \(N - n\) are satisfied.

- If the subset problem has a solution, then:

 - all \(N - 2n\) constraints \(\sum s_i \cdot x_i = s\) are satisfied,

 - and for each \(i\), \(x_i = 0\) or \(x_i = 1\),

 to the total of \(N - n = N \cdot (1 - \varepsilon)\).

- If \(N - n\) constraints are satisfied, then for every \(i\), \(x_i \in \{0, 1\}\) – a solution to the subset problem.
5. Constraint Propagation Techniques (Semenov, Numerica, Jaulin, etc): Reminder

- Constraint propagation – traditional technique for solving constraint satisfaction problems.

- We start with the intervals \([x_1, \bar{x}_1], \ldots, [x_n, \bar{x}_n]\) containing the actual values of the unknowns \(x_1, \ldots, x_n\).

- On each iteration:
 - select \(i\) and a constraint \(f_j(x_1, \ldots, x_n) = 0\),
 - replace \([x_i, \bar{x}_i]\) with new interval \(x_i^{(j)} = [\bar{x}_i^{(j)}, \bar{x}_i^{(j)}] \overset{\text{def}}{=} \{x_i : x_i \in [\bar{x}_i, \bar{x}_i] \land f_j(x_1, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n) = 0\}
 for some \(x_k \in [\bar{x}_k, \bar{x}_k]\).

- If the process stalls, we bisect the interval for one the variables into two and try to decrease both resulting half-boxes.

- Problem: cannot use it if not all constraints are valid.
6. Traditional Interval-Related Constraint Propagation Techniques: Example

- **Toy problem:** find \(x \in [-5, 5] \) for which \(x - x^2 = 0 \).
- **Pre-processing:** parse the expression:
 \[
 r = x^2; x - r = 0.
 \]
- **Originally:** \(X = [-5, 5], R = [-\infty, \infty] \).
- **Use the first constraint:** \(x \in [-5, 5] \) implies \(r \in [0, 25] \), so for \(r \), the new interval is \([-\infty, \infty] \cap [0, 25] = [0, 25] \):
 \[
 X = [-5, 5], \quad R = [0, 25].
 \]
- **Use the second constraint:** for \(x \), we have \([-5, 5] \cap [0, 25] = [0, 5] \), and similarly for \(r \), so
 \[
 X = [0, 5], \quad R = [0, 5].
 \]
- **Use the first constraint:** \(x = \sqrt{r} \), hence
 \[
 X = [0, 2.24], \quad R = [0, 5].
 \]
- **Use the second constraint:**
 \[
 X = [0, 2.24], \quad R = [0, 2.24].
 \]
- After a while, we stall at \(X = R \approx [0, 1] \), so we bisect \(X \) to \([0, 1/2] \) and \([1/2, 1] \).
- Then, we converge to \(x = 0 \) and \(x = 1 \).
7. New Idea

- On each iteration, we still select a variable x_i, but:
 - instead of selecting a single constraint,
 - we try all N constraints, and get N resulting intervals $[x_i^{(j)}, \bar{x}_i^{(j)}]$.

- We know that $\geq N \cdot (1 - \varepsilon)$ constraints are satisfied.

- Hence $x_i \leq \bar{x}_i^{(j)}$ for $\geq N \cdot (1 - \varepsilon)$ different values j.

- Let us sort all N upper endpoints $\bar{x}_i^{(j)}$ ($1 \leq j \leq N$) into an increasing sequence $u_1 \leq u_2 \leq \ldots \leq u_N$,

- Then we can guarantee that x_i is smaller than (or equal to) at least $N \cdot (1 - \varepsilon)$ terms in this sequence.

- So, $x_i \leq u_N \cdot \varepsilon$.

- Similarly, if we sort the lower endpoints $\underline{x}_i^{(j)}$ into a decreasing sequence $l_1 \geq \ldots \geq l_N$, then $x_i \geq l_N \cdot \varepsilon$.
8. **New Algorithm**

- On each iteration, we:
 - we select a variable x_i;
 - for each of N constraints, we compute the corresponding interval $[\bar{x}_i^{(j)}, \bar{x}_i^{(j)}]$;
 - we sort all N upper endpoints $\bar{x}_i^{(j)}$ ($1 \leq j \leq N$) into an increasing sequence $u_1 \leq u_2 \leq \ldots \leq u_N$,
 - we sort all N lower endpoints $\underline{x}_i^{(j)}$ ($1 \leq j \leq N$) into a decreasing sequence $l_1 \geq l_2 \geq \ldots \geq l_N$, and
 - we take $[l_N \cdot \varepsilon, u_N \cdot \varepsilon]$ as the new interval for x_i.

- If the process stalls, we bisect the interval and try to decrease both resulting half-boxes.

- *Comment:* producing $u_{N \cdot \varepsilon}$ can be done faster than by sorting.
9. Other Potential Applications of the New Algorithm: Design and Control Problems

- In many areas of science and engineering, we are interested in solving *design* and *control* problems.

- *In mathematical terms*: a design or a control can be usually represented by the values of the relevant numerical parameters \(x = (x_1, \ldots, x_n) \).

- Usually, in these problems, the users describe several *constraints* that the desired design or control must satisfy.

- *Objective*: find a design (corr., a control) that satisfies all these constraints.
10. **How to Describe Constraints?**

- *Example:* an airplane design can be described in terms of:
 - the geometric parameters of the plane,
 - the thickness of the plates that form the airplane’s skin,
 - the weight and power of the engine, etc.

- *Typical constraint:* a limitation on some characteristics \(y = f(x_1, \ldots, x_n) \) of this design.

- *Examples*
 - the airplane’s speed must exceed some \(y_0 \),
 - its fuel use must not exceed a certain amount,
 - the overall cost must be within given limits.

- So, constraints are of the type \(f(x_1, \ldots, x_n) \leq y_0 \) or \(f(x_1, \ldots, x_n) \geq y_0 \) (or \(f(x_1, \ldots, x_n) = y_0 \)).
11. Constraint Satisfaction vs. Constrained Optimization

- *Constraint satisfaction*: find a design that satisfies given constraints.
- *Problem*:
 - different designs that satisfy the given constraints;
 - we must select one of these designs.
- Users can often describe their preference in terms of an *objective function* $g(x_1, \ldots, x_n)$ (whose value should be made as large as possible).
- *Constrained optimization*: maximizing $g(x_1, \ldots, x_n)$ under the given constraints.
- *In general*: both problem are NP-hard.
- *In practice*: there are many efficient tools for solving them.
12. “Soft” Constraints

- **Problem:** sometimes, the users constraints are inconsistent.

- **Example:** design a plane that is:
 - as fast and as fuel-efficient as the existing Airbus or Boeing planes,
 - but with 0 noise level.

- **Reasons for inconsistency:**
 - some constraints are *absolute* (e.g., safety constraints),
 - others are *desires* – they can be dismissed if not possible.

- Such “not required” constraints are called *soft constraints*.

- **Comment:** soft constraints are an important research topic, with annual conferences.

- **Idea:** when we cannot satisfy all the constraints, we should satisfy as many constraints as possible.
13. Case Study: Seismic Inverse Problem

- **Problem**: to determine the geophysical structure of a region.

- **Solution**: we:
 - measure seismic travel times, and
 - reconstruct velocities at different depths from this data.

- **Difficulty**: the inverse problem is ill-defined:
 - *large* changes in the original distribution of velocities can lead to
 - very *small* changes in the resulting measured values.

- **Conclusion**: many different velocity distributions are consistent with the same measurement results.
14. Drawbacks of the Existing Approach

- **Situation:** because of the non-uniqueness, the velocity distribution that is returned by the existing algorithm is usually not geophysically meaningful.

- **Example:** it predicts velocities outside of the range of reasonable velocities at this depth.

- **Current solution:** a geophysicist adjusts the initial approximation so as to avoid this discrepancy.

- **Problem:** several iterations are needed; it is very time-consuming.

- **Problem:** adjustment requires special difficult-to-learn skills.

- **Result:** the existing tools for solving the seismic inverse problem are not as widely used as they could be.
15. It Is Necessary to Take Expert Knowledge Into Consideration

- **Objective:** make the tools for processing seismic data more accessible.
- **Solution:** incorporate the expert knowledge into the algorithm for solving the inverse problem.
- **Example why expert knowledge is needed:** velocity is outside the interval of values which are possible at this depth for this particular geological region.
- **Corresponding expert knowledge:** the intervals of possible values of data.
- **What needs to be done:** modify the inverse algorithms in such a way that the velocities are always within these intervals.
- **Question:** how can we do it?
16. How We Can Use Interval Uncertainty

- How algorithms work now:
 - start with a reasonable velocity model;
 - predict travel times \(x_i \) between stations;
 - use the difference \(\Delta x_i = \tilde{x}_i - x_i \), where \(\tilde{x}_i \) are measured values, to adjust the velocity model:
 * divide \(\Delta x_i \) by the length \(L \) of the path;
 * add \(\Delta x_i / L \) to all slownesses along the path.

- How to modify when we know the interval \([s_j, \bar{s}_j]\) of possible slownesses:
 - first, we compute the next approximation \(s_j^{(k)} \) to the slownesses,
 - then, we replace \(s_j^{(k)} \) with the nearest value within the interval \([s_j, \bar{s}_j]\).
17. Explicit Expert Knowledge: Fuzzy Uncertainty

- Experts can usually produce a wider interval of which they are practically 100% certain.

- In addition, experts can also produce narrower intervals about which their degree of certainty is smaller.

- As a result, instead of a single interval, we have a nested family of intervals corresponding to different levels of uncertainty.

- In effect, we get a fuzzy interval (of which different intervals are α-cuts).

- Previously: a solution is satisfying or not.

- New idea: a satisfaction degree d.

- Specifics: d is the largest α for which all s_i are within the corresponding α-cut intervals.
18. Implicit Expert Knowledge: Interval Uncertainty

- **Situation:** sometimes, velocities are in the interval, but the geophysical structure is still not right.

- **Explanation:**
 - algorithms assume that the measured errors are independent and normally distributed;
 - so, stopping criterion is MSE \(E \overset{\text{def}}{=} \sum_{i=1}^{N} (x_i - \tilde{x}_i)^2 \);
 - for geophysically meaningless models, \(E \) is small, but some differences \(x_i - \tilde{x}_i \) are large.

- **Solution:** require that \(|x_i - \tilde{x}_i| \leq \Delta \) for some bound \(\Delta \).
19. How We Can Use Interval Uncertainty

- **Problem**: how can we guarantee that we only get solutions which are physical in the above sense?

- **Traditional approach**: once the mean square error is small, we stop iterations.

- **Natural new idea**: continue iterations until all (or rather almost all, with proportion $\geq 1 - \varepsilon$) differences $|x_i - \tilde{x}_i|$ are under Δ.

- **Question**: what if this does not happen?

- **Similar question**: what traditional algorithms do if we do not MSE small?

- **Answer to similar question**: restart computations with a different starting velocity model.

- **Solution to our problem**: restart computations with a different starting velocity model.
20. A General Problem

- Inverse problem is ill-posed \approx has many different solutions.
- Many inverse problems in science and engineering are ill-posed.
- *Regularization:* we select a solution with a certain property, e.g., a smooth one, $J \overset{\text{def}}{=} \int (x'(t))^2 \, dt \to \min$.

- *Discrete case:* $J_{\text{discr}} \overset{\text{def}}{=} \sum_i (x(t_{i+1}) - x(t_i))^2$.

- *2-D case:* $J \overset{\text{def}}{=} \sum_{n_1,n_2} [(f(n_1+1,n_2) - f(n_1,n_2))^2 + (f(n_1,n_2+1) - f(n_1,n_2))^2]$, or, equivalently, $J = \sum_{p,p'} (f(p) - f(p'))^2$.

- Smoothness leads to efficient algorithms.

- *Problem:* for inverse problem in geophysics, we only have piecewise smoothness.
21. General Problem: Precise Formulation

- **Idea:** we only take into account the pairs of neighboring pixels that belong to the same zone:
 \[J(Z) = \sum_{p,p' \text{ are neighbors in the same zone}} (f(p) - f(p'))^2, \]
 where \(Z \) denotes the information about the zones.

- Often, we do not know where the edges are, i.e., we do not know \(Z \).

- **Idea:** find \(Z \) for which the result inside each zone is the smoothest, i.e., minimize
 \[J^* = \min_{\text{all possible divisions } Z \text{ into zones}} J(Z). \]

- **Problem:** the resulting problem is no longer convex.

- It is known that non-convex problems are, in general, more computationally difficult.
22. **Result: Reconstructing Piecewise Smooth Solutions is NP-Hard**

- *Idea of the proof:* we reduce a known NP-hard problem (subset sum) to our problem.

- *Subset sum:*
 - given m positive integers s_1, \ldots, s_m and an integer $s > 0$,
 - check whether it is possible to find a subset of this set of integers whose sum is equal to exactly s.

- *Alternative description:* check whether there exist $x_i \in \{0, 1\}$ for which $\sum s_i \cdot x_i = s$.
23. Reduction

- We want to reconstruct an $m \times m$ solution $f(n_1, n_2)$.
- Let $d = \lfloor m/2 \rfloor$. We want a piecewise smooth solution $f(n_1, n_2)$ that consists of two zones.
- The following linear constraints describe the consistency between the observations and the desired solution:
 - $f(n_1, n_2) = 1$ for $n_2 > d$;
 - $\sum_{i=1}^{m} s_i \cdot f(i, d) = s$; and
 - $f(n_1, n_2) = 0$ for $n_2 < d$.
- **Problem**: among all the solutions that satisfy these constraints, find the one with the smallest non-smoothness J^*.
24. Proof

- Let us show that \(\min J^* = 0 \) \(\leftrightarrow \) the original subset problem has a solution.
- If \(J^* = 0 \), then all the values within each zone must be the same.
- Since \(f = 1 \) for \(n_2 > d \) and \(f = 0 \) for \(n_2 < d \), every value \(f(n_1, n_2) \) is \(1 \) or \(0 \).
- Thus, the values \(x_i = f(i, d) \in \{0, 1\} \) solve the original subset problem
\[\sum s_i \cdot x_i = s. \]
- Vice versa:
 - if the selected instance of the original subset problem has a solution \(x_i \),
 - then we can take \(f(i, d) = x_i \) and get the solution of the inverse problem
 for which the degree of non-smoothness is exactly 0.
25. Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209,
- by NSF grants EAR-0112968, EAR-0225670, and EIA-0321328, and
- by NIH grant 3T34GM008048-20S1.
26. In Many Practical Problems, It Is Very Important to Test Smoothness

- In many practical problems, we must check whether a given object is smooth or whether it has non-smooth areas:
 - *aerospace structure*: cracks, holes, other faults;
 - *mammography*: small clots, cracks, etc., which may indicate a tumor.

- **Smoothness leads to linearity**
 - If a tested structure has no faults, then the surface is usually smooth.
 - As a result, the dependencies f_i between the test signals x_j and the received signals y_i are also smooth.
 - Since we are sending relatively weak signals x_i (strong signals can damage the plane), we can neglect quadratic (and higher order) terms in Taylor series and only consider linear terms in these series.

- **Non-smoothness leads to non-linearity**
 - A fault (e.g., a crack) is, usually, a violation of smoothness.
 - Thus, if there is a fault, the structure stops being smooth; hence, the function f_j stops being smooth.
 - Therefore, linear terms are no longer sufficient.

- So, we can detect the fault by checking whether the dependency between y_j and x_i is linear.
27. The Resulting Proposal: Main Idea

As a result of the above analysis, we propose the following way of detecting faults:

- We apply different signals x_j to the object, and measure the response y_i.
- If the measurement results are consistent with the linear dependence of y_i on x_j, this means that there are no faults, and no further testing is needed.
- If the measurement results are inconsistent with the linear model, this means that there is a fault, and so further thorough tests are needed.

This proposal saves time and resources:

- Checking linearity is easy.
- As a result, for non-destructive evaluation of aerospace structures, we get a simple test that:
 - enables us to save time and resources (necessary for the detailed solution of the inverse problem)
 - by limiting this detalization only to the cases when the presence of the faults was revealed by non-linearity.
28. Mechanical Analysis of the Problem

• Fault-less plate:
 – Transmitter sends a signal \(x(t) = A \cdot \cos(\omega \cdot t) \).
 – This signal travels to the receiver (at a distance \(d \)) with a speed of sound \(v \), and thus gets delayed by \(\Delta t = d/v \).
 – Hence, the received signal is
 \[
 y(t) = k \cdot x(t - \Delta t) = k \cdot A \cdot \cos(\omega \cdot t - \omega \cdot d/v),
 \]
 where the coefficient \(k \) describes the loss of amplitude.
 Thus, for a fault-less plate, we indeed have a linear dependence between the transmitted signal \(x(t) \) and the measured signal \(y(t) \).

• Plate with faults:
 – For a plate with a crack, \(\Delta t = d/v + d_0/v_0 \), where \(d_0 \) is the linear size of the fault, and \(v_0 \) is the speed of sound in the air.
 – As we transmit the signal \(x(t) \), the plate starts vibrating.
 – This vibration changes the position of both borders of the crack and therefore, changes (harmonically) the distance \(d_0: d_0 = d_0(t) \).
 – So, we get a non-linear phase:
 \[
 y(t) = k \cdot A \cdot \cos(\omega \cdot t - \omega \cdot d/v - \omega \cdot d_0(t)/v_0),
 \]
 and hence a non-linear dependence.
29. Experimental Confirmation of Non-Linearity: Pseudo-Random Signals

For *pseudo-random signals* $x(t)$ (which combine components of several different frequencies with pseudo-random amplitudes and pseudo-random phases):

- For a fault-less plate, the dependence between the transmitted signal $x(t)$ and the measured signal $y(t)$ is linear, i.e.,
 \[y(t) = \int A(t - s) \cdot x(s) \, ds \]
 for some function $A(t)$.

- For a plate with a fault, this dependence is non-linear: namely, cubic terms must be taken into consideration.

The amplitude of the cubic term is roughly proportional to the cube of the linear fault size. Thus:

- not only the non-linear terms indicate the *presence* of the fault, but also
- the value of the cubic term can be used to determine the *size* of the fault.
30. Pseudo-Random Signals Are Difficult to Generate

- In practice, it is difficult to generate pseudo-random signals.
- It is therefore desirable to confirm that non-linearity can be also observed for simpler signals, e.g., for sinusoid signals.
- In our experiment, as a signal \(x_j \), we sent an ultrasound wave. To generate this wave:
 - a sinusoid electric signal \(x(t) = A \cdot \cos(\omega \cdot t) \) was sent to the transducer,
 - which then generated an ultrasonic wave in the tested object.
- The transducer was set at an angle of incidence of 31° with the plate, so that a wave would go along the surface of the plate (such waves are called Lamb waves).
- The transducer is somewhat non-linear.
- To separate the non-linearity of the transducer from the non-linearity of the plate itself, we placed two sensors on the plate:
 - the first sensor is located near the transducer, and it measures the ultrasonic wave \(x_1(t) \) that the transducer generates;
 - the second sensor is located at a distance from the transducer, and it measure the wave \(x_2(t) \) changed after passing through the plate.
- Then, we check whether \(x_2(t) \) linearly depends on \(x_1(t) \).
31. Experiment with Sinusoid Signals: A Software Part

- After measuring the two signals \(x_1(t) \) and \(x_2(t) \), we apply FFT to both.
- Compute the total energy \(E_1 = \int |\hat{x}_1(\omega)|^2 d\omega \) of the signal \(x_1 \) in the frequency range [350 KHz, 650Khz] of the transducer.
- Compute the total energy \(E_2 = \int |\hat{x}_2(\omega)|^2 d\omega \) of the signal \(x_2 \) in the same frequency range.
- Check whether \(E_2 \) is a linear function of \(E_1 \), i.e., whether there exist \(k \) and \(n \) for which
 \[
 E_2 = k \cdot E_1 + n.
 \]
- Due to inevitable measurement inaccuracy, after each measurement, we do not get the exact values \(E_i(V) \).
- We only get an interval \([E_i^-(V), E_i^+(V)]\) of possible values of \(E_i(V) \).
- The question is: is this data consistent with the assumption that \(E_2(V) \) is a linear function of \(E_1(V) \)?
- In other words, it is possible to find real numbers \(k > 0 \), \(n \), and values \(E_1(V) \in [E_1^-(V), E_1^+(V)] \) and \(E_2(V) \in [E_2^-(V), E_2^+(V)] \) for which
 \[
 E_2(V) = k \cdot E_1(V) + n?
 \]
32. **Taking Measurement Inaccuracy into Consideration: Solution**

- **Proposition:** The set of intervals \([E_1^-(V), E_1^+(V)], [E_2^-(V), E_2^+(V)]\) is consistent with the assumption that \(E_2(V)\) is a linear function of \(E_1(V)\) if and only if the following inequality is true:

\[
\max_{V'<V} \frac{E_2^-(V) - E_2^+(V')}{E_1^+(V) - E_1^-(V')} \leq \max_{V'<V} \frac{E_2^+(V') - E_2^-(V)}{E_1^+(V') - E_1^-(V)}.
\]

- **Algorithm:** To check non-linearity, we must check the above inequality.

- **Practical recommendation:** Brief summary: To detect the faults, we must use at least two different signal levels.

 - If the increase in the signal level \(x_j\) leads to a proportional increase in the measured values \(y_i\), then most probably the object is smooth.

 - If the dependence of \(y_i\) on \(x_j\) is non-linear, then, most probably, there is a fault, so further analysis is needed.
33. Experimental Results

- **Undamaged case:***

<table>
<thead>
<tr>
<th>V</th>
<th>$[E_1^-(V), E_1^+(V)]$</th>
<th>$[E_2^-(V), E_2^+(V)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>undamaged, 10^6</td>
<td>undamaged, 10^6</td>
</tr>
<tr>
<td>0V</td>
<td>[0.00, 0.01]</td>
<td>[0.00, 0.01]</td>
</tr>
<tr>
<td>6V</td>
<td>[2.65, 2.66]</td>
<td>[1.59, 1.61]</td>
</tr>
<tr>
<td>7V</td>
<td>[3.12, 3.14]</td>
<td>[1.86, 1.88]</td>
</tr>
<tr>
<td>8V</td>
<td>[3.62, 3.64]</td>
<td>[2.16, 2.18]</td>
</tr>
<tr>
<td>9V</td>
<td>[4.59, 4.69]</td>
<td>[2.70, 2.80]</td>
</tr>
</tbody>
</table>

 In the undamaged case, we clearly have a linear dependency:

 $$E_2(V) \approx 0.6 \cdot E_1(V).$$

- **Damaged case:***

<table>
<thead>
<tr>
<th>V</th>
<th>$[E_1^-(V), E_1^+(V)]$</th>
<th>$[E_2^-(V), E_2^+(V)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>damaged, 10^5</td>
<td>damaged, 10^4</td>
</tr>
<tr>
<td>0V</td>
<td>[0.02, 0.03]</td>
<td>[0.06, 0.11]</td>
</tr>
<tr>
<td>6V</td>
<td>[0.69, 0.70]</td>
<td>[0.23, 0.28]</td>
</tr>
<tr>
<td>7V</td>
<td>[0.87, 0.92]</td>
<td>[0.14, 0.23]</td>
</tr>
<tr>
<td>8V</td>
<td>[1.05, 1.08]</td>
<td>[4.75, 4.84]</td>
</tr>
<tr>
<td>9V</td>
<td>[1.28, 1.32]</td>
<td>[5.57, 5.80]</td>
</tr>
</tbody>
</table>

 In the damaged case, the dependence is clearly non-linear.