Which Bio-Diversity Indices Are Most Adequate

Olga Kosheleva1, Craig Tweedie2,
and Vladik Kreinovich3

1Department of Teacher Education
2Environmental Science and Engineering Program
3Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
olgak@utep.edu, ctweedie@utep.edu
vladik@utep.edu
1. Gauging Bio-Diversity Is Important

- One of the main objectives of ecology is to study and preserve bio-diversity.
- Most existing measures of diversity are based on the relative frequencies p_i of different species.
- The most widely used measures are:
 - the Shannon index $H = -\sum_{i=1}^{n} p_i \cdot \ln(p_i)$, and
 - the Simpson index $D = \sum_{i=1}^{n} p_i^2$.
- Ecologists also use indices related to D: $\frac{1}{D}$ and $1 - D$.
- They also use indices related to the sum $\sum_{i=1}^{n} p_i^q$, such as
 Rényi entropy $H_q = \frac{1}{1 - q} \cdot \ln \left(\sum_{i=1}^{n} p_i^q \right)$.
2. Why These Measures?

- The above measures of diversity are, empirically, in good accordance with the ecologists’ intuition.

- However, from the theoretical viewpoint, the success of these measures of diversity is somewhat puzzling.

- Why these expressions and not other possible expressions?

- In this talk, we provide possible justification for the above empirically successful measures.

- We provide two possible justification:
 - we start with a simple fuzzy logic-based justification which explains Simpson index, and then
 - we provide a more elaborate justification that explains all the above diversity measures.
3. An Intuitive Meaning of Bio-Diversity

• An ecosystem is perfectly diverse if all its species are reasonably frequent but not dominant.

• In other words, the ecosystem is healthy if:
 – the first species is reasonably frequent but not dominant, and
 – the second species is reasonably frequent but not dominant,
 – etc.

• This statement uses an imprecise (“fuzzy”) natural-language terms like “reasonably frequent”.

• We need to translate this statement into precise terms.

• We will use fuzzy logic, since fuzzy logic was invented exactly for such a translation.
4. Let Us Use Fuzzy Logic

- For each p_i, let $\mu(p_i)$ be the degree to which the species is reasonably frequent and not dominant.
- To compute bio-diversity, we need to combine use “and”-operation to combine these degrees.
- The general strategy in applications of fuzzy techniques is to select the simplest possible “and”-operation.
- The two simplest (and most frequently used) “and”-operations are the product and the minimum.
- Our objective is to optimize bio-diversity, and most efficient optimization techniques use differentiation.
- From this viewpoint, it is desirable to come up with the differentiable measure of diversity.
- This eliminates min (since $\min(a, b)$ is not differentiable when $a = b$), so we use the product $\prod_{i=1}^{n} \mu(p_i)$.
5. Let Us Use Fuzzy Logic (cont-d)

- Maximizing \(\prod_{i=1}^{n} \mu(p_i) \) is equivalent to maximizing its logarithm \(L = \sum_{i=1}^{n} f(p_i) \), where \(f(p_i) \equiv \ln(\mu(p_i)) \).

- In a diverse ecosystem all the frequencies \(p_i \) are rather small.

- Indeed, if one of the values is large, this means that we have a dominant species, not a diversity.

- For small \(p_i \), we can replace each value \(f(p_i) \) with the sum of the few first terms in its Taylor expansion.

- In the first approximation, \(f(p_i) = a_0 + a_1 \cdot p_i \), so

\[
L = a_0 \cdot n + a_1.
\]

- This expression does not depend on the frequencies \(p_i \) and thus, cannot serve as a measure of diversity.
6. Fuzzy Logic Justifies the Simpson Index

- We want to maximize \(L = \sum_{i=1}^{n} f(p_i) \).

- We have shown that linear terms in \(f(p_i) \) are not sufficient.

- So, to adequately describe diversity, we need to take into account quadratic terms

\[
f(p_i) = a_0 + a_1 \cdot p_i + a_2 \cdot p_i^2.
\]

- In this approximation,

\[
L = a_0 \cdot n + a_1 + a_2 \cdot \sum_{i=1}^{n} p_i^2.
\]

- Maximizing this expression is equivalent to maximizing the Simpson index \(D = \sum_{i=1}^{n} p_i^2 \).
7. The Ultimate Purpose of Diversity Estimation Is Decision Making

- We want to describe which combinations of frequencies \(p = (p_1, \ldots, p_n) \) are preferred and which are not.

- Most plans succeed only with a certain probability.

- So, we need to consider “lotteries”, in which different combinations \(A_i \) appear with different probabilities \(P_i \).

- The main result of utility theory states that:
 - if we have a consistent ordering relation \(L \succeq L' \) (“\(L \) is preferable to \(L' \)”) between such lotteries,
 - then there exists a function \(u \) (called utility) s.t.
 \[
 L \succeq L' \text{ if and only if } u(L) \geq u(L'),
 \]
 where
 \[
 u(L) = P_1 \cdot u(A_1) + \ldots + P_n \cdot u(A_n).
 \]

- In our case, we need a utility function \(u(p_1, \ldots, p_n) \).
8. Bio-Diversity of Subsystems

- An important intuitive feature of bio-diversity is the *localness* property:
 - that, in addition to the bio-diversity of the whole ecosystem,
 - we may be interested in the bio-diversity of its subsystems.

- For the whole ecosystem, the sum of frequencies is 1.

- When we analyze a subsystem, we only take into account some of the species.

- So the sum of the frequencies can be smaller than 1.

- Thus, we need to consider the values $u(p)$ for tuples for which $\sum_i p_i < 1$.

- It makes sense to compare possible arrangements within a subsystem.
9. Localness Property

- We only compare tuples \(p = (p_1, \ldots, p_n) \) and \(p' = (p'_1, \ldots, p'_n) \) for which \(\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} p'_i \).

- Let us assume that for all species \(i \) from some set \(I \), the frequencies are the same: \(p_i = p'_i \).

- Suppose also that, from the point of bio-diversity, the tuple \(p \) is preferable to tuple \(p' \): \(p \succeq p' \); so:
 - while in the two tuples, the level of diversity is the same for species from the set \(I \),
 - species from the complement set \(-I\) have a higher degree of bio-diversity.

- Thus, if we replace the values \(p_i = p'_i \) for \(i \in I \) with some other values \(q_i = q'_i \), we will still have \(q \succeq q' \).
10. Localness Property in Precise Terms

- **Localness property:**
 - Let $I \subseteq \{1, \ldots, n\}$ be a set of indices.
 - Let $p \succeq p'$ be two tuples s.t. $p_i = p'_i$ for all $i \in I$.
 - Let q and q' be another two tuples for which:
 - $q_i = p_i$ and $q'_i = p'_i$ for all $i \notin I$; and
 - $q_i = q'_i$ for all $i \in I$.
 - Then, $q \succeq q'$.

- **It is known:** in this case, utility has the form

 $u(p_1, \ldots, p_n) = \sum_{i=1}^{n} u_i(p_i)$ or $U(p_1, \ldots, p_n) = \prod_{i=1}^{n} U_i(p_i)$.

- Maximizing the product is equivalent to maximizing its logarithm $\sum \ln(U_i(p_i))$.

- So, w.l.o.g., we can assume that $u = \sum_{i=1}^{n} u_i(p_i)$.
11. The Degree of Bio-Diversity Should Not Change If We Rename the Species

- Numbers assigned to species – which species is number 1, which is number 2, etc. – are arbitrary.

- So, if we simply change these arbitrarily selected numbers, the degree of bio-diversity should not change.

- Thus, the dependence of \(u_i \) on \(p_i \) should not depend on \(i \).

- So, we should have \(u_i(p_i) = d(p_i) \) for one and the same function \(d(p) \).

- In this case, the desired degree of bio-diversity is equal to \(u(p) = \sum_{i=1}^{n} d(p_i) \).

- So, the question is which functions \(d(p) \) are appropriate for describing bio-diversity.
12. Without Losing Generality, We Can Assume That the Function $d(p)$ is Twice Differentiable

- Our ultimate goal is optimization.
- Many useful optimization techniques use second derivatives.
- So, it is desirable to consider only *twice* differentiable functions.
- Every continuous function can be:
 - with an arbitrary accuracy,
 - approximated by twice differentiable functions (even by polynomials).
- So, we can assume that $d(p)$ is twice differentiable without losing generality.
13. Possibility of Scaling

- Relative bio-diversity of a region should not depend on:
 - whether we consider it as a separate ecosystem,
 - or we consider it as a part of a larger ecosystem.

- When we consider an ecosystem by itself, the frequencies add up to 1: \(\sum_{i=1}^{n} p_i = 1 \).

- When we consider it as a part of a larger ecosystem with \(N > n \) species, we get \(p'_i = \lambda \cdot p_i \), where \(\lambda = \frac{n}{N} \).

- Thus, if we have \(p \succeq p' \), we should also have \(\lambda \cdot p \succeq \lambda \cdot p' \).

- We say that a twice differentiable function \(d(p) \) is scale-invariant if \(\sum_{i=1}^{n} p_i = \sum_{i=1}^{n} p'_i \) and \(\sum_{i=1}^{n} d(p_i) = \sum_{i=1}^{n} d(p'_i) \) imply
 \[
 \sum_{i=1}^{n} d(\lambda \cdot p_i) = \sum_{i=1}^{n} d(\lambda \cdot p'_i).
 \]
14. Main Result

- **Definition.** We say that functions $d_i(p)$ are equivalent if $d_2(p) = a + b \cdot p + c \cdot d_1(p)$.

- **Motivation.** In this case, optimizing $\sum d_2(p_i)$ is equivalent to optimizing $\sum d_1(p_i)$.

- **Theorem.** Every scale-invariant function $d(p)$ is equivalent:
 - either to $d(p) = \pm \ln(p)$,
 - or to $d(p) = \pm p^q$ for some q, or
 - or to $d(p) = \pm p \cdot \ln(p)$.

- **Observation.** The corresponding sums are exactly Shannon, Simpson, and Rényi indices.

- **Conclusion.** We have explained why only these indices adequately describe bio-diversity.
15. Conclusions

- One of the main goals of ecology is to maintain bio-diversity.
- To properly maintain bio-diversity, it is important to adequately gauge it.
- Several semi-heuristic measures have been proposed for measuring bio-diversity.
- Their successful use confirms that these measures adequately reflect our ideas of bio-diversity.
- In this talk, we provide a fuzzy-motivated theoretical explanation for the existing bio-diversity indices.
16. Acknowledgment

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721.
17. **Proof: Differential Equation**

- For small deviations $p'_i = p_i + \varepsilon \cdot \Delta p_i$, localness means that $\sum_{i=1}^{n} \Delta p_i = 0$ and $\sum_{i=1}^{n} d'(p_i) \cdot \Delta p_i = 0$ imply

 $$\sum_{i=1}^{n} d'(\lambda \cdot p_i) \cdot \Delta p_i = 0.$$

- Let $e = (1, \ldots, 1)$, $d' = (d'(p_1), \ldots)$, and $d'_\lambda = (d'(\lambda \cdot p_1), \ldots)$.

- Localness means that if $e \cdot \Delta p = 0$ and $d' \cdot \Delta p = 0$, then $d'_\lambda \cdot \Delta p = 0$.

- One can see that in this case, d'_λ is in the linear space spanned by e and d': $d'(\lambda \cdot p_i) = \alpha(\lambda, p) + \beta(\lambda, p) \cdot d'(p_i)$.

- Let us show that the values α and β depend only on λ and do not depend on the tuple p.

18. \textbf{Proof: β Does Not Depend on p}

- We have proven that $d'(\lambda \cdot p_i) = \alpha(\lambda, p) + \beta(\lambda, p) \cdot d'(p_i)$.

- If we subtract the equations corresponding to two different indices i and j, we conclude that

$$d'(\lambda \cdot p_i) - d'(\lambda \cdot p_j) = \beta(\lambda, p) \cdot (d'(p_i) - d'(p_j)).$$

- Thus, $\beta(\lambda, p) = \frac{d'(\lambda \cdot p_i) - d'(\lambda \cdot p_j)}{d'(p_i) - d'(p_j)}$.

- The right-hand side of this equality only depends on p_i and p_j and does not depend on any other p_k.

- Thus, the coefficient $\beta(\lambda, p)$ only depends on p_i and p_j and does not depend on any other frequencies p_k.

- For a different pair (i', j'), we will conclude that $\beta(\lambda, p)$ does not depend on the frequencies p_i and p_j either.

- Thus, β does not depend on the tuple p at all.
19. **Proof: \(\beta \) Is Differentiable**

- \(\beta(\lambda, p) = \beta(\lambda) \), so \(d'(\lambda \cdot p_i) = \alpha(\lambda, p) + \beta(\lambda) \cdot d'(p_i) \).
- Hence, \(\alpha(\lambda, p) = d'(\lambda \cdot p_i) - \beta(\lambda) \cdot d'(p_i) \).
- The right-hand side of this formula only depends on \(p_i \) and does not depend on any other frequency \(p_j \).
- Thus, the coefficient \(\alpha(\lambda, p) \) only depends on \(p_i \) and does not depend on any other frequency \(p_j \).
- For a different index \(i' \), we will conclude that \(\alpha(\lambda, p) \) does not depend on the frequency \(p_i \) either.
- Thus, \(\alpha \) does not depend on the tuple \(p \) at all, it only depends on \(\lambda \): \(d'(\lambda \cdot p_i) = \alpha(\lambda) + \beta(\lambda) \cdot d'(p_i) \).
- For \(D(p) \overset{\text{def}}{=} d'(p) \), we get \(D(\lambda \cdot p_i) = \alpha(\lambda) + \beta(\lambda) \cdot D(p_i) \).
- Since \(\beta(\lambda) = \frac{d'(\lambda \cdot p_i) - d'(\lambda \cdot p_j)}{d'(p_i) - d'(p_j)} \), the function \(\beta(\lambda) \) is differentiable.
20. Proof: Final Part

- Since \(\alpha(\lambda) = d'(\lambda \cdot p_i) - \beta(\lambda) \cdot d'(p_i) \) and \(\beta(\lambda) \) is differentiable, the function \(\alpha(\lambda) \) is also differentiable.
- Differentiating \(D(\lambda \cdot p_i) = \alpha(\lambda) + \beta(\lambda) \cdot D(p_i) \) w.r.t. \(\lambda \) and taking \(\lambda = 1 \), we get
 \[
p \cdot \frac{dD}{dp} = A + B \cdot D.
 \]
- Separating variables, we get \(\frac{dD}{A + B \cdot D} = \frac{dp}{p} \).
- For \(B = 0 \), we get \(D(p) = d'(p) = A \cdot \ln(p) + C \).
- In this case, \(d(p) \) is equivalent to \(p \cdot \log(p) \).
- For \(B \neq 0 \), we get \(d'(p) = D(p) = C \cdot p^A + C' \).
- In this case, \(d(p) \) is equivalent to \(p^q \) or to \(\ln(p) \).