Towards Discrete Interval, Set, and Fuzzy Computations

Enrique Portillo, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso
El Paso, Texas 79968, USA
eportillo2@miners.utep.edu, olgak@utep.edu
vladik@utep.edu
1. Need for Data Processing

- We want to understand the world, to know the values of different quantities characterizing the world.
- Some quantities we can directly measure: e.g., we can easily measure the temperature in El Paso.
- Often, we are interested in the value of some quantity y which is difficult to measure directly, e.g.:
 - temperature inside a star,
 - where a close-to-Earth asteroid will be in 20 years.
- Such quantities can only be measured \textit{indirectly}:
 - find easier-to-measure measure quantities x_1, \ldots, x_n related to y by a known relation $y = f(x_1, \ldots, x_n)$;
 - measure x_i and \textit{process} the measurement results \tilde{x}_i, generating $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$.
2. **Example of Data Processing**

- The goals of geosciences are:
 - to better predict earthquakes,
 - to better find minerals, etc.

- For that, we need to know the density at different depths and locations.

- This density is difficult (or even impossible) to measure directly.

- To indirectly measure the density, we can:
 - measure the gravity field at different locations and at different heights, and then
 - use the known algorithms to reconstruct the desired density values.
3. Need to Take Uncertainty into Account

- The result \tilde{x}_i of measuring (or estimating) a quantity x_i is, in general, different from its actual value:

$$\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i \neq 0.$$

- Since $\tilde{x}_i \neq x_i$, the result $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$ of data processing is different from the actual (unknown) value y:

$$y = f(x_1, \ldots, x_n) \neq f(\tilde{x}_1, \ldots, \tilde{x}_n) = \tilde{y}.$$

- To make decisions based on the estimate \tilde{y}, we need to know the accuracy $\Delta y \overset{\text{def}}{=} \tilde{y} - y$ of this estimate.

- If a geophysical analysis has shown that a natural gas field contains $\tilde{y} = 10$ trillion cubic feet of gas:

 - if it is 10 ± 1, we should start production;
 - if it is 10 ± 20, there may be no gas at all, so a further analysis is needed.
4. Traditional Probabilistic Approach to Uncertainty

• In the traditional probabilistic approach, we:

 – estimate the probabilities of different values of Δx_i (it is often Gaussian),

 – find correlations (if any) between the corresponding random variables Δx_i, and then

 – use known statistical methods to derive the resulting probability distribution for Δy.

• A usual way of finding the probability distribution for $\Delta x_i = \tilde{x}_i - x_i$ is to repeatedly compare:

 – the results \tilde{x}_i obtained by our measuring instrument and

 – the results $\tilde{x}^{st}_i \approx x_i$ obtained by a much more accurate (“standard”) measuring instrument.
5. Need to Go Beyond the Traditional Probabilistic Approach

- The first case is when we have state-of-the-art measurements.
- For example, a geophysicist uses the state-of-the-art instrument for measuring gravity.
- It would be great to also have a more accurate “standard” instrument, but this is the best we have.
- Another case is when we use the measurements as a part of manufacturing process.
- In such situations, in principle, we can calibrate each sensor, but calibration is very expensive.
- Expensive calibration may be necessary when manufacturing a nuclear reactor, but not for toothbrushes.
6. Case of Interval Uncertainty

- Often, we do not know the probabilities of different values of measurement error Δx_i.

- In such situations, we should know at least an upper bound Δ_i on this error.

- Indeed, if we do not even known any upper bound, then this is not a measurement, this is a wild guess.

- For measurements, a manufacturer provides an upper bound on the meas. error, i.e., Δ_i s.t. $|\Delta x_i| \leq \Delta_i$.

- In this case, based on the measurement result \tilde{x}_i, we can conclude that the actual value x_i is in the interval $x_i \overset{\text{def}}{=} [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.

- For example, when the measured value is $\tilde{x}_i = 1.0$, the actual value x_i is in $[1.0 - 0.1, 1.0 + 0.1] = [0.9, 1.1]$.
7. Need for Interval Computations

• When we know all the inputs with interval uncertainty, then:
 – for each input x_i,
 – we only know the interval x_i of possible values of x_i.

• Different combinations of values $x_i \in x_i$ lead to different values $y = f(x_1, \ldots, x_n)$ of the desired quantity y.

• In such situations, it is desirable to find the set of all possible values y, i.e., the set

$$Y \overset{\text{def}}{=} \{ f(x_1, \ldots, x_n) : x_1 \in x_1, \ldots, x_n \in x_n \}.$$

• The problem of estimating Y based on known intervals x_i is known as a problem of *interval computations*.
8. Need for Fuzzy Uncertainty and Fuzzy Computations

- In many practical cases, instead of measuring the values x_i, we ask experts to estimate these values.
- Experts often use imprecise (“fuzzy”) words like “small”.
- Fuzzy logic is a technique designed to translate such expert statements into computer-understandable form.
- To each word S (like “small”) and to each value x, we assign a degree $\mu_S(x)$ to which x is S.
- The resulting membership function can be obtained, e.g., by polling experts.
- Thus, we get membership functions $\mu_i(x_i)$ corresponding to different inputs.
- We need to compute the membership function $\mu(y)$ corresponding to $y = f(x_1, \ldots, x_n)$.
9. How to Perform Fuzzy Computations: Towards Zadeh’s Extension Principle

• y is a possible value of the desired variable if for some real numbers x_1, \ldots, x_n for which $y = f(x_1, \ldots, x_n)$:
 - the value x_1 is a possible value of the 1st input, \ldots
 - the value x_n is a possible value of the n-th input.

• In other words, we are interested in the degree to which the following statement holds:

\[\bigvee_{x_i: f(x_1,\ldots,x_n)=y} (x_1 \text{ is possible } \& \ldots \& x_n \text{ is possible}). \]

• The degree to which x_i is possible is equal to $\mu_i(x_i)$.

• If we use min for “and” and max for “or”, we get

\[\mu(y) = \max_{x_1,\ldots,x_n: f(x_1,\ldots,x_n)} \min(\mu_1(x_1), \ldots, \mu_n(x_n)). \]
10. From the Computational Viewpoint, Fuzzy Computations Can Be Reduced to Interval and Set Computations

- We have $\mu(y) = \max_{x_1, \ldots, x_n : f(x_1, \ldots, x_n)} \min(\mu_1(x_1), \ldots, \mu_n(x_n))$.

- This formula can be rewritten in terms of α-cuts $x_i(\alpha) \overset{\text{def}}{=} \{x_i : \mu_i(x_i) \geq \alpha\}$ and $y(\alpha) = \{y : \mu(y) \geq \alpha\}$:

 $$y(\alpha) = \{f(x_1, \ldots, x_n) : x_1 \in x_1(\alpha), \ldots, x_n(\alpha)\}.$$

- So, by applying interval (or set) computations, we can find the sets $y(\alpha)$.

- Once we know the sets $y(\alpha)$, we can reconstruct each value $\mu(y)$ as $\max\{\alpha : y \in y(\alpha)\}$.

- In other words, fuzzy computations can be reduced to the interval (set) computations for α-cuts.
11. Need for Discrete Computations

- Usually, in interval and fuzzy computations, we assume that the variables are *continuous*.
- In other words, we assume that each variable can take all real values from the corresponding range.
- In practice, sometimes, variables are *discrete*, e.g., x_i can be number of people.
- It is reasonable to develop efficient algorithms for computing the ranges in such discrete cases.
- We have shown that fuzzy computations can be reduced to interval (set) computations.
- Because of this, we will only describe algorithms for the interval (set) case.
12. How Difficult Are the Usual (Continuous) Interval Computation Problems

- For a linear function \(f(x_1, \ldots, x_n) = a_0 + \sum_{i=1}^{n} a_i \cdot x_i \), its range \(y \) over intervals \(x_i = [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i] \) is

\[
y = [\tilde{y} - \Delta, \tilde{y} + \Delta], \text{ where } \tilde{y} = a_0 + \sum_{i=1}^{n} a_i \cdot \tilde{x}_i, \Delta = \sum_{i=1}^{n} |a_i| \cdot \Delta_i.
\]

- For a quadratic function computing the range over given intervals is, in general, an NP-hard problem.

- Moreover, it is NP-hard even when we restrict ourselves to such a simple quadratic function as variance

\[
V = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_i \right)^2.
\]

- Crudely speaking, this means that no feasible algorithm is possible for solving all cases of this problem.
13. Discrete Case: Formulation of the Problem

- In the discrete case, each variable x_i can take only finitely many values x_{i1}, \ldots, x_{in_i}.
- In practice, these values are usually equally distributed, i.e., $x_i = c_i + x'_i \cdot h_i$ for integer x'_i.
- W.l.o.g., we can thus assume that each variable x_i takes integer values between some bounds \underline{X}_i and \overline{X}_i.
- In this case, the range estimation problem takes the following form:
 - for each input i, we know the bounds \underline{X}_i and \overline{X}_i on x_i;
 - we also know a function $f(x_1, \ldots, x_n)$;
 - our objective is to find the range
 \[
 Y = \{ f(x_1, \ldots, x_n) : x_i = \underline{X}_i, \underline{X}_i + 1, \ldots, \overline{X}_i \}.
 \]
14. Discrete Case: The Problem Becomes NP-Hard Even for Linear Functions

- This directly follows from the known fact that the following *subset sum* problem is NP-hard:
 - given integers a_1, \ldots, a_n, and a,
 - check whether there exist values $x_i \in \{0, 1\}$ for which $\sum_{i=1}^{n} a_i \cdot x_i = a$.

- Thus, for $x_i \in \{0, 1\}$, it is NP-hard to check whether the range of $\sum_{i=1}^{n} a_i \cdot x_i$ contains a given integer a.

- In practice, the ranges of a_i are usually bounded.

- We show that in this case, feasible algorithms are possible.

- We also show that feasible algorithms are possible for variance.
15. Main Assumption and First Idea

- We assume that all the values are bounded by some constant A: $|a_i| \leq A$.
- It is also reasonable to assume that the possible values of x_i are bounded by some constant X: $|x_i| \leq X$.
- There are finitely many values of each input x_i.
- So, in principle, we can enumerate all combinations (x_1, \ldots, x_n); however:
 - if we take at least two different values of each of n variables x_i,
 - we will thus need to consider at least 2^n different combinations (x_1, \ldots, x_n).
- Thus, the above straightforward algorithm requires exponential time.
16. Linear Case: Polynomial-Time Algorithm A_{lin}

- We want to compute $Y = \left\{ \sum_{i=1}^{n} a_i \cdot x_i : x_i = X_i, \ldots, \overline{X}_i \right\}$.

- Let us sequentially compute the ranges

$$Y_k \overset{\text{def}}{=} \left\{ \sum_{i=1}^{k} a_i \cdot x_i : x_i = X_i, X_i + 1, \ldots, \overline{X}_i \right\}, \ k = 0, 1, \ldots, n.$$

- Here, $Y_0 = \{0\}$; once we know Y_k, we compute Y_{k+1} as

$$Y_{k+1} = \{y_k + a_{k+1} \cdot x_{k+1} : y_k \in Y_k \& x_{k+1} = X_{k+1}, \ldots, \overline{X}_{k+1} \}.$$

- From $|a_i| \leq A$, $|x_i| \leq X$, we get $\left| \sum_{i=1}^{k} a_i \cdot x_i \right| \leq n \cdot A \cdot X$.

- On each of n stages, we thus need $O(n)$ computational steps, to the total of $n \cdot O(n) = O(n^2)$.

- A_{lin} computes the exact range in polynomial time; so, we gain computation time without sacrificing accuracy.
17. Computing the Range of Variance in Polynomial Time

- We sequentially compute the intermediate sets of pairs

\[P_k = \left\{ \left(\sum_{i=1}^{k} x_i^2, \sum_{i=1}^{k} x_i \right) : x_i = X_i, \ldots, \bar{X} \right\} \].

- \(P_0 = \{(0, 0)\} \); once we know \(P_k \), we compute \(P_{k+1} \) as

\[\left\{ (y_k + x_{k+1}^2, z_k + x_{k+1}) : (y_k, z_k) \in P_k \& x_{k+1} = X_{k+1}, \ldots, \bar{X}_{k+1} \right\} \).

- Once we have the set \(P_n \), we compute the desired set \(Y \) of possible values of variance as

\[Y = \left\{ \frac{1}{n} \cdot y - \left(\frac{1}{n} \cdot z \right)^2 : (y, z) \in P_n \right\} \].

- On each of \(n + 1 \) stages, we need \(O(n^2) \) computations.
- So overall, we need \(n \cdot O(n^2) = O(n^3) \) computational steps.
18. Computing Higher Central Moments

\[C_m \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E)^k \] in Polynomial Time

- We sequentially compute the set \(T_k \) of all possible tuples \((s_1(k), \ldots, s_m(k)) \), where \(s_\ell(k) = \sum_{i=1}^{k} x_\ell^i \).

- \(T_0 = \{(0, \ldots, 0)\} \); based on \(T_k \), we compute \(T_{k+1} \) as

\[
T_{k+1} = \{((s_1 + x_{k+1}, \ldots, s_m + x_{m_{k+1}}) : (s_1, \ldots, s_m) \in T_k \land x_{k+1} = \frac{X_{k+1}}{n}, \ldots, \frac{X_{k+1}}{n}) \}
\]

- Once we have \(T_n \), we compute \(C_m \) for each of its tuples, since \(C_m \) is a linear combination of \(s_0(n), \ldots, s_m(n) \).

- On each stage, this computation takes time \(O(n^m) \), so overall, we need \(n \cdot O(n^m) = O(n^{m+1}) \) steps.
19. Computing Covariance in Polynomial Time

- We want to compute the range for covariance
 \[C_{xy} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - \left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_i \right) \cdot \left(\frac{1}{n} \cdot \sum_{i=1}^{n} y_i \right). \]

- We sequentially compute
 \[T_k = \left\{ \left(\sum_{i=1}^{k} x_i, \sum_{i=1}^{k} y_i, \sum_{i=1}^{k} x_i \cdot y_i \right) \right\}. \]

- Once we know \(T_k \), we compute
 \[T_{k+1} = \left\{ (s_1+x_{k+1}, s_2+y_{k+1}, s_3+x_{k+1} \cdot y_{k+1}) : (s_1, s_2, s_3) \in T_k \& x_{k+1} = X_{k+1}, \ldots, X_{k+1} & y_{k+1} = Y_{k+1}, \ldots, Y_{k+1} \right\}. \]

- Once we know \(T_n \), we can compute \(Y \).

- Each iteration thus takes \(O(n^3) \) steps, so the overall computation time is \(n \cdot O(n^3) = O(n^4) \).
20. Computing Correlation in Polynomial Time

• Correlation is defined as $\rho_{xy} = \frac{C_{xy}}{\sqrt{V_x \cdot V_y}}$, where

$$V_x \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \cdot \sum_{i=1}^{n} x_i\right)^2, \quad V_y \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} y_i^2 - \left(\frac{1}{n} \cdot \sum_{i=1}^{n} y_i\right)^2.$$

• We sequentially compute

$$T_k = \left\{ \left(\sum_{i=1}^{k} x_i, \sum_{i=1}^{k} y_i, \sum_{i=1}^{k} x_i \cdot y_i, \sum_{i=1}^{k} x_i^2, \sum_{i=1}^{k} y_i^2 \right) \right\}.$$

$$T_{k+1} = \left\{ (s_1 + x_{k+1}, s_2 + y_{k+1}, s_3 + x_{k+1} \cdot y_{k+1}, s_4 + x_{k+1}^2, s_5 + y_{k+1}^2) : (s_1, \ldots, s_5) \in T_k \& \underline{X}_{k+1} \leq x_{k+1} \leq \overline{X}_{k+1} \& \underline{Y}_{k+1} \leq y_{k+1} \leq \overline{Y}_{k+1} \right\}.$$

• Once we know T_n, we compute the desired set Y.

• Each iteration thus takes $O(n^5)$ steps, so overall, we need $n \cdot O(n^5) = O(n^6)$ steps.
21. Conclusions

- We are often interested in the quantity \(y \) which is related to known \(x_i \) by a known dependence \(y = f(x_1, \ldots, x_n) \).

- For example:
 - we know the range \([x_i, \bar{x}_i]\) of each of \(x_i \),
 - we want to find the range of possible values of \(y \).

- When we have fuzzy information about each \(x_i \), we want to know the resulting fuzzy set for \(Y \).

- Usually, we assume that all values from each interval \([x_i, \bar{x}_i]\) are possible.

- In practice, we sometimes have an additional information, e.g., that the values \(x_i \) are integers.

- We provide feasible algorithms for computing such limited ranges for several functions \(f(x_1, \ldots, x_n) \).
22. Acknowledgment

This work was supported in part:

- by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721,

- by Grants 1 T36 GM078000-01 and 1R43TR000173-01 from the National Institutes of Health, and

- by a grant on F-transforms from the Office of Naval Research.