r-Bounded Fuzzy Measures are Equivalent to ε-Possibility Measures

Karen Richart, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso
El Paso, TX 79968, USA
karichart@miners.utep.edu, olgak@utep.edu, vladik@utep.edu
1. Outline

- Traditional probabilistic description of uncertainty is based on *additive* probability measures.

- To describe non-probabilistic uncertainty, it is therefore reasonable to consider *non-additive* measures.

- An important class of non-additive measures are *possibility* measures, for which \(\mu(A \cup B) = \max(\mu(A), \mu(B)) \).

- In this talk, we show that possibility measures are, in some sense, universal approximators:
 - for every \(\varepsilon > 0 \),
 - every non-additive measure which satisfies a certain reasonable boundedness property
 - is equivalent to a measure which is \(\varepsilon \)-close to a possibility measure.
2. Additive Measures: Brief Reminder

- Let X be a set called a *universal set*.

- An *algebra* \mathcal{A} is a non-empty class of subsets $A \subseteq X$ which is closed under complement, \cup, and \cap, i.e.:
 - if $A \in \mathcal{A}$, then its complement $-A$ is also in \mathcal{A};
 - if $A \in \mathcal{A}$ and $B \in \mathcal{A}$, then $A \cup B \in \mathcal{A}$;
 - if $A \in \mathcal{A}$ and $B \in \mathcal{A}$, then $A \cap B \in \mathcal{A}$.

- An *additive measure*, we mean a function μ mapping sets $A \in \mathcal{A}$ to numbers $\mu(A) \geq 0$ s.t. $A \cap B = \emptyset$ implies
 \[\mu(A \cup B) = \mu(A) + \mu(B). \]

- *Examples*: length, area, volume, probability.

- *Properties*: monotonicity ($A \subseteq B$ implies $\mu(A) \leq \mu(B)$), $\mu(\emptyset) = 0$.
3. Fuzzy Measures: Brief Reminder

• A function $\mu(A)$ defined on an algebra of subsets of a universal set X is called a fuzzy measure if:

 – it is monotonic, i.e., $A \subseteq B$ implies $\mu(A) \leq \mu(B)$, and

 – it satisfies the properties $\mu(\emptyset) = 0$ and $\mu(X) = 1$.

• A function $\mu(A)$ is called maxitive if for every two sets A and B, we have $\mu(A \cup B) = \max(\mu(A), \mu(B))$.

• By a possibility measure, we mean a maxitive fuzzy measure.
4. Which Measures Are Reasonable?

- In general, a measure $\mu(A)$ describes how important is the set A.
- The larger the measure, the more important is the set A.
- From this viewpoint:
 - if we take the union $A \cup B$ of two sets of bounded size,
 - then the size of the union cannot be arbitrarily large.
- The size of $A \cup B$ should be limited by some bound depending on the bound on $\mu(A)$ and $\mu(B)$.
- Similarly, if the sizes of A and B are sufficiently small, then the size of the union should also be small.
5. Which Measures Are Reasonable: Definition

- By a non-additive measure, we mean a function $\mu(A)$ that assigns, to each set $A \in \mathcal{A}$, a number $\mu(A) \geq 0$.

- A non-additive measure μ is r-bounded if it satisfies the following two properties:
 - for every $\Gamma > 0$, there exists a $\Delta > 0$ such that if $\mu(A) \leq \Gamma$ and $\mu(B) \leq \Gamma$, then $\mu(A \cup B) \leq \Delta$;
 - for every $\eta > 0$, there exists a $\nu > 0$ such that if $\mu(A) \leq \nu$ and $\mu(B) \leq \nu$ then $\mu(A \cup B) \leq \eta$.

- Comment: every additive measure is r-bounded, with $\Delta = 2 \cdot \Gamma$ and $\nu = \frac{\eta}{2}$.
6. **Equivalence: Analysis of the Problem**

- The numerical values of probabilities have observable sense.

- The probability of an event E can be defined as the limit of the frequency with which E occurs.

- In contrast, e.g., possibility values do not have direct meaning.

- The only important thing is which values are larger and which are smaller.

- This describes which events are more possible and which are less possible.

- From this viewpoint,
 - if two measures can be obtained from each other by a transformation that preserves the order,
 - such measures can be considered to be equivalent.
7. Definitions and the Main Result

- Non-additive measures $\mu(A)$ and $\mu'(A)$ are called equivalent if there exists a 1-1 monotonic function $f(x)$ s.t.
 \[\mu'(A) = f(\mu(A)) \]
 for every A.

- Let $\varepsilon > 0$ be a real number.

- A non-additive measure $\mu(A)$ is an ε-possibility measure if for every A and B:
 \[\max(\mu(A), \mu(B)) \leq \mu(A \cup B) \leq (1 + \varepsilon) \cdot \max(\mu(A), \mu(B)). \]

- **Result**: For every $\varepsilon > 0$, every r-bounded non-additive measure is equivalent to an ε-possibility measure.

- Can we strengthen this result? Is each r-bounded measure equivalent to a possibility measure?

- A simple answer is “No”: any measure which is equivalent to a maxitive one is also maxitive.
8. First Auxiliary Result: Possibility of Uniform Equivalence

- We proved that each r-bounded non-additive measure can be re-scaled into an “almost” possibility measure.
- Sometimes, we have several measures.
- Can we re-scale all of them into ε-possibility measures by using the same re-scaling $f(x)$?
- \textit{Result:} For every $\varepsilon > 0$, and for every finite set of r-bounded non-additive measures $\mu_1(A), \ldots, \mu_n(A)$,
 - there exists a 1-1 function $f(x)$ for which
 - all n measures $\mu'_i(A) \overset{\text{def}}{=} f(\mu_i(A))$ are ε-possibility measure.
9. Case of Generalized Metric

• Similarly to the fact that measures describe size, metrics describe distance.

• Usually, we consider metrics $d(a, b)$ which satisfy the triangle inequality $d(a, c) \leq d(a, b) + d(b, c)$.

• However, it does not have to be this particular inequality. What is important is that:
 – if $d(a, b)$ and $d(b, c)$ are bounded by some $\Gamma > 0$,
 – then the distance $d(a, c)$ cannot be arbitrarily large,
 – it should be limited by some bound depending on the bound on $d(a, b)$ and $d(b, c)$.

• Similarly:
 – if $d(a, b)$ and $d(b, c)$ are sufficiently small,
 – then the distance $d(a, c)$ is also small.
10. Generalized Metric (cont-d)

- A function \(d : X \times X \to R_0^+ \) is called an \textit{r-bounded metric} if it satisfies the following two properties:
 - for every \(\Gamma > 0 \), there exists a \(\Delta > 0 \) such that if \(d(a, b) \leq \Gamma \) and \(d(b, c) \leq \Gamma \), then \(d(a, c) \leq \Delta \);
 - for every \(\eta > 0 \), there exists a \(\nu > 0 \) such that if \(d(a, b) \leq \nu \) and \(d(b, c) \leq \nu \) then \(d(a, c) \leq \eta \).

- A function \(d : X \times X \to R_0^+ \) is called an \textit{ultrametric} if
 \[
d(a, c) \leq \max(d(a, b), d(b, c)) \text{ for all } a, b, \text{ and } c.
 \]

- \(d : X \times X \to R_0^+ \) is called an \textit{\(\varepsilon \)-ultrametric} if
 \[
d(a, c) \leq (1 + \varepsilon) \cdot \max(d(a, b), d(b, c)) \text{ for all } a, b, \text{ and } c.
 \]
11. Generalized Metrics: Results

- r-bounded metrics $d(a, b)$ and $d'(a, b)$ are called *equivalent* if there exists a 1-1 monotonic $f(x)$ s.t.:
 \[d'(a, b) = f(d(a, b)) \text{ for all } a, b. \]

- **Result:** For every $\varepsilon > 0$, every r-bounded metric is equivalent to an ε-ultrametric.

- For every $\varepsilon > 0$, and for every finite set of r-bounded metrics $d_1(a, b), \ldots, d_n(a, b)$, there is a 1-1 f-n $f(x)$ s.t.
 \[d'_i(a, b) \overset{\text{def}}{=} f(d_i(a, b)) \text{ are } \varepsilon\text{-ultrametrics for all } i. \]
12. General Result Including Measures and Metrics as Special Cases

- By a *domain*, we mean a set S with a partial binary operation $\circ : S \times S \to S$.
- For measures, S is an algebra of sets, and \circ is the union.
- For metrics, S is the set of all pairs (a, b), and the binary operation transforms (a, b) and (b, c) into (a, c).
- By a *characteristic*, we mean a function $F : S \to R_0^+$. A characteristic $F(x)$ is called *r-bounded* if:
 - $\forall \Gamma > 0 \exists \Delta > 0$ s.t. if $F(x) \leq \Gamma$, $F(x') \leq \Gamma$, and $x \circ x'$ is defined, then $F(x \circ x') \leq \Delta$;
 - for every $\eta > 0$, there exists a $\nu > 0$ such that if $F(x) \leq \nu$ and $F(x') \leq \nu$ then $F(x \circ x') \leq \eta$.
13. General Results (cont-d)

- $F(x)$ is called an ε-maxitive if for all x and x' for which $x \circ x'$ is defined,

$$F(x \circ x') \leq (1 + \varepsilon) \cdot \max(F(x), F(x')).$$

- $F(x)$ and $F'(x)$ are called equivalent if there exists a 1-1 monotonic f-n $f(x)$ for which

$$F'(x) = f(F(x)) \text{ for all } x \in S.$$

- **Result:** for every $\varepsilon > 0$, every r-bounded characteristic is equivalent to an ε-maxitive one.

- **Result:** for every $\varepsilon > 0$, and for every finite set of r-bounded characteristics $F_1(x), \ldots, F_n(x)$,

 - there exists a 1-1 f-n $f(x)$ for which

 - all n characteristics $F'_i(x) \overset{\text{def}}{=} f(F_i(x))$ are ε-maxitive.
14. Conclusions

- The traditional probabilistic description of uncertainty uses additive probability measures.
- For describing non-probabilistic uncertainty, it is therefore reasonable to use non-additive measures.
- The most well-known example of such measures are possibility measures $\mu(A)$, for which:
 \[
 \mu(A \cup B) = \max(\mu(A), \mu(B)) \quad \text{for all } A \text{ and } B.
 \]
- In this talk, we show that the wide use of possibility measures may be explained by the fact that:
 - under some reasonable conditions,
 - these measures can approximate any non-additive measures.
15. Conclusions (cont-d)

- Namely, for every $\varepsilon > 0$, each non-additive measure is isomorphic to an ε-possibility measure, s.t.:
 \[
 \max(\mu(A), \mu(B)) \leq \mu(A \cup B) \leq (1+\varepsilon) \cdot \max(\mu(A), \mu(B)).
 \]

- If we have several measures, then:
 - the tuple consisting of these measures
 - is isomorphic to a tuple of ε-possibility measures.

- Similar results are also proven for generalized metrics.
16. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721.
- The authors are thankful:
 - to M. Amine Khamsi, Ilya Molchanov, and Hung T. Nguyen for valuable discussions, and
 - to the anonymous referees for valuable suggestions.
17. Proof of the Main Result

- Let us first define a doubly infinite sequence \(\ldots < c_{-1} < c_0 < c_1 < \ldots \) as follows.
- We take \(c_0 = 1 \); once we have defined \(c_k \) for some \(k \geq 0 \), we define \(c_{k+1} \) as follows.
- By def-n of an \(r \)-bounded measure, there exists \(\Delta_k > 0 \) s.t. if \(\mu(A) \leq c_k \) and \(\mu(B) \leq c_k \), then \(\mu(A \cup B) \leq \Delta_k \).
- We then take \(c_{k+1} \overset{\text{def}}{=} (1 + \varepsilon) \cdot \max(c_k, \Delta_k) \).
- Here, \(c_0 = 1 \) and \(c_{k+1} \geq (1 + \varepsilon) \cdot c_k \); thus, \(c_k \geq (1 + \varepsilon)^k \) and \(c_k \to \infty \) when \(k \) increases.
- Similarly, once we have defined the value \(c_{-k} \) for some \(k \geq 0 \), we define \(c_{-(k+1)} \) as follows.
- By def-n of an \(r \)-bounded measure, there exists \(\nu_k > 0 \) s.t. if \(\mu(A) \leq \nu_k \) and \(\mu(B) \leq \nu_k \), then \(\mu(A \cup B) \leq c_{-k} \).
- We then take \(c_{-(k+1)} \overset{\text{def}}{=} (1 - \varepsilon) \cdot \min(c_{-k}, \nu_k) \).
18. Proof (cont-d)

• Here, $c_0 = 1$ and $0 < c_{-(k+1)} \leq (1 - \varepsilon) \cdot c_{-k}$, hence $0 < c_{-k} \leq (1 - \varepsilon)^k$ and $c_{-k} \to 0$ when $k \to \infty$.

• Since $c_k \uparrow$, $c_k \to \infty$, and $c_{-k} \to 0$, for every $x > 0$, $\exists k$ s.t. $c_{k-1} < x \leq c_k$; we define $f(x)$ as follows:

 – for each integer k, we take $f(c_k) = (1 + \varepsilon)^{k/2}$ and
 – for each value x between c_{k-1} and c_k, we define $f(x)$ by linear interpolation: if $c_{k-1} < x \leq c_k$, then

 $$f(x) = f(c_{k-1}) + \frac{x - c_{k-1}}{c_k - c_{k-1}} \cdot (f(c_k) - f(c_{k-1})).$$

• Since the sequence c_k is strictly increasing, the resulting function $f(x)$ is also strictly increasing.

• W.l.o.g., we assume $\mu(A) \geq \mu(B)$.

• There exist integers k and ℓ for which $c_{k-1} < \mu(A) \leq c_{k+1}$ and $c_{\ell-1} < \mu(B) \leq c_{\ell}$; here, $k \geq \ell$ and $c_{\ell} \leq c_k$.
19. Proof Finalized

• Hence, we have $\mu(A) \leq c_k$ and $\mu(B) \leq c_k$.

• By definition of Δ_k, we therefore have $\mu(A \cup B) \leq \Delta_k$.

• By definition of c_{k+1}, this value is always greater than Δ_k, thence we have $\mu(A \cup B) \leq c_{k+1}$.

• Since the function $f(x)$ is increasing, we get

 \[\mu'(A \cup B) = f(\mu(A \cup B)) \leq f(c_{k+1}) = (1 + \varepsilon)^{(k+1)/2}. \]

• Here, $\max(\mu(A), \mu(B)) = \mu(A) > c_{k-1}$, so:

 \[\max(\mu'(A), \mu'(B)) = \mu'(A) = f(\mu(A)) > f(c_{k-1}) = (1+\varepsilon)^{(k-1)/2}, \]

 i.e., $(1 + \varepsilon)^{(k-1)/2} < \max(\mu'(A), \mu'(B))$.

• Multiplying both sides by $1 + \varepsilon$, we get

 \[(1 + \varepsilon)^{(k+1)/2} < (1 + \varepsilon) \cdot \max(\mu'(A), \mu'(B)). \]

• We already know that $\mu'(A \cup B) \leq (1 + \varepsilon)^{(k+1)/2}$.

• Thus, $\mu'(A \cup B) \leq (1 + \varepsilon) \cdot \max(\mu'(A), \mu'(B))$. Q.E.D.
20. Proof of the Auxiliary Result

- This proof is similar to the main result, the only difference is how we define c_{k+1} and $c_{-(k+1)}$.
- By definition of an r-bounded measure, for each i, there exists a value $\Delta_{ki} > 0$ for which:

 $$\text{if } \mu_i(A) \leq c_k \text{ and } \mu_i(B) \leq c_k, \text{ then } \mu_i(A \cup B) \leq \Delta_{ki}.$$

- We take $c_{k+1} = (1 + \varepsilon) \cdot \max(c_k, \Delta_{k1}, \ldots, \Delta_{kn})$.
- By definition of an r-bounded measure, for each i, there exists a value $\nu_{ki} > 0$ for which:

 $$\text{if } \mu_i(A) \leq \nu_{ki} \text{ and } \mu_i(B) \leq \nu_{ki}, \text{ then } \mu_i(A \cup B) \leq c_{-k}.$$

- We take $c_{-(k+1)} = (1 - \varepsilon) \cdot \min(c_{-k}, \nu_{k1}, \ldots, \nu_{kn})$.
- The rest of the proof is the same.