Rotation-Invariance Can Further Improve State-of-the-Art Blind Deconvolution Techniques

Fernando Cervantes1, Bryan Usevitch1 and Vladik Kreinovich2

1Department of Electrical and Computer Engineering
2Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA
fcervantes@miners.utep.edu, usevitch@utep.edu
vladik@utep.edu
1. Image Deconvolution: Formulation of the Problem

- The measurement results y_k differ from the actual values x_k due to additive noise and blurring:

$$y_k = \sum_i h_i \cdot x_{k-i} + n_k.$$

- From the mathematical viewpoint, y is a convolution of h and x: $y = h \ast x$.

- Similarly, the observed image $y(i, j)$ differs from the ideal one $x(i, j)$ due to noise and blurring:

$$y(i, j) = \sum_{i'} \sum_{j'} h(i - i', j - j') \cdot x(i', j') + n(i, j).$$

- It is desirable to reconstruct the original signal or image, i.e., to perform deconvolution.
2. Ideal No-Noise Case

- In the ideal case, when noise \(n(i, j) \) can be ignored, we can find \(x(i, j) \) by solving a system of linear equations:

\[
y(i, j) = \sum_{i'} \sum_{j'} h(i - i', j - j') \cdot x(i', j').
\]

- However, already for 256×256 images, the matrix \(h \) is of size 65,536×65,536, with billions entries.

- Direct solution of such systems is not feasible.

- A more efficient idea is to use Fourier transforms, since \(y = h \ast x \) implies \(Y(\omega) = H(\omega) \cdot X(\omega) \); hence:

 - we compute \(Y(\omega) = \mathcal{F}(y) \);
 - we compute \(X(\omega) = \frac{Y(\omega)}{H(\omega)} \), and
 - finally, we compute \(x = \mathcal{F}^{-1}(X(\omega)) \).
3. Deconvolution in the Presence of Noise with Known Characteristics

- Suppose that signal and noise are independent, and we know the power spectral densities

\[S_I(\omega) = \lim_{T \to \infty} E \left[\frac{1}{T} \cdot |X_T(\omega)|^2 \right], \quad S_N(\omega) = \lim_{T \to \infty} E \left[\frac{1}{T} \cdot |N_T(\omega)|^2 \right] \]

- We minimize the expected mean square difference

\[d \overset{\text{def}}{=} \lim_{T \to \infty} \frac{1}{T} \cdot E \left[\int_{-T/2}^{T/2} (\hat{x}(t) - x(t))^2 \, dt \right]. \]

- Minimizing \(d \) leads to the known Wiener filter formula

\[\hat{X}(\omega_1, \omega_2) = \frac{H^*(\omega_1, \omega_2)}{|H(\omega_1, \omega_2)|^2 + \frac{S_N(\omega_1, \omega_2)}{S_I(\omega_1, \omega_2)}} \cdot Y(\omega_1, \omega_2). \]
4. Blind Image Deconvolution in the Presence of Prior Knowledge

- Wiener filter techniques assume that we know the blurring function h.
- In practice, we often only have partial information about h.
- Such situations are known as blind deconvolution.
- Sometimes, we know a joint probability distribution $p(\Omega, x, h, y)$ corresponding to some parameters Ω:
 \[p(\Omega, x, h, y) = p(\Omega) \cdot p(x|\Omega) \cdot p(h|\Omega) \cdot p(y|x, h, \Omega). \]
- In this case, we can find
 \[\hat{\Omega} = \arg\max_{\Omega} p(\Omega|y) = \int \int_{x,h} p(\Omega, x, h, y) \, dx \, dh \]
 and
 \[(\hat{x}, \hat{h}) = \arg\max_{x, h} p(x, h|\hat{\Omega}, y). \]
5. Blind Image Deconvolution in the Absence of Prior Knowledge: Sparsity-Based Techniques

- In many practical situations, we do not have prior knowledge about the blurring function h.
- Often, what helps is sparsity assumption: that in the expansion $x(t) = \sum_i a_i \cdot e_i(t)$, most a_i are zero.
- In this case, it makes sense to look for a solution with the smallest value of
 \[\|a\|_0 \overset{\text{def}}{=} \# \{ i : a_i \neq 0 \} . \]
- The function $\|a\|_0$ is not convex and thus, difficult to optimize.
- It is therefore replaced by a close convex objective function $\|a\|_1 \overset{\text{def}}{=} \sum_i |a_i|$.

- Sparsity is the main idea behind the algorithm described in (Amizic et al. 2013) that minimizes
 \[
 \frac{\beta}{2} \cdot \| y - W a \|^2_2 + \frac{\eta}{2} \cdot \| W a - H x \|^2_2 + \tau \cdot \| a \|_1 + \alpha \cdot R_1(x) + \gamma \cdot R_2(h).
 \]

- Here, \(R_1(x) = \sum_{d \in D} 2^{1-o(d)} \sum_i |\Delta^d_i(x)|^p \), where \(\Delta^d_i(x) \) is the difference operator, and

- \(R_2(h) = \| Ch \|^2 \), where \(C \) is the discrete Laplace operator.

- The \(\ell^p \)-sum \(\sum_i |v_i(x)|^p \) is optimized as \(\sum_i \frac{(v_i(x^{(k)}))^2}{v_i^{2-p}} \), where \(v_i = v_i(x^{(k-1)}) \) for \(x \) from the previous iteration.

- This method results in the best blind image deconvolution.
7. Need for Improvement

- The current technique is based on minimizing the sum $|\Delta_x I|^p + |\Delta_y I|^p$.

- This is a discrete analog of the term $\left| \frac{\partial I}{\partial x} \right|^p + \left| \frac{\partial I}{\partial y} \right|^p$.

- For $p = 2$, this is the square of the length of the gradient vector and is, thus, rotation-invariant.

- However, for $p \neq 2$, the above expression is not rotation-invariant.

- Thus, even if it works for some image, it may not work well if we rotate this image.

- To improve the quality of image deconvolution, it is thus desirable to make the method rotation-invariant.

- We show that this indeed improves the quality of deconvolution.
8. Rotation-Invariant Modification: Description and Results

- We want to replace the expression $\left| \frac{\partial I}{\partial x} \right|^p + \left| \frac{\partial I}{\partial y} \right|^p$ with a rotation-invariant function of the gradient.

- The only rotation-invariant characteristic of a vector a is its length $\|a\| = \sqrt{\sum_i a_i^2}$.

- Thus, we replace the above expression with
 \[\left(\left| \frac{\partial I}{\partial x} \right|^2 + \left| \frac{\partial I}{\partial y} \right|^2 \right)^{p/2}. \]

- Its discrete analog is $((\Delta_x I)^2 + (\Delta_y I)^2)^{p/2}$.

- This modification leads to a statistically significant improvement in reconstruction accuracy $\|\hat{x} - x\|_2$.
9. Testing the New Algorithm: Details

• To test the new method, we compared it with the original methods:
 – on the same “Cameraman” image use in the original method,
 – with the same values of the parameters ($\alpha = 1$, $\gamma = 5 \cdot 10^5$, $\tau = 0.125$, $\eta^1 = 1024$);
 – we applied the same Gaussian blurring with the variance of 5;
 – with the same S/N ratio corr. to $\sigma = 0.001$.

• We used the same criterion $\|x - \hat{x}\|_2$ to gauge the deconvolution quality.

• Both methods start with randomly selected initial values $v^{1,1}_d$.

• Because of this, the results differ slightly when we reapply the algorithm to the same image.
10. Testing the New Algorithm (cont-d)

- Because of the statistical character of the results:
 - we apply both algorithms to the same image several times, and
 - we use statistical criteria to decide which method is better.

- To perform this comparison, we applied each of the two algorithms 30 times.

- To make the results more robust, we eliminated the smallest and the largest value of this distance.

- The averages of the remaining 28 distances are:
 - for the original algorithm 1195.21,
 - for the new algorithm, $1191.01 < 1195.21$.
11. Testing the New Algorithm: Results

- To check whether this difference is statistically significance, we applied the t-test for two independent means:

\[t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\left(\frac{(N_1 - 1) \cdot s_1^2 + (N_2 - 1) \cdot s_2^2}{N_1 + N_2 - 2}\right) \cdot \left(\frac{1}{N_1} + \frac{1}{N_2}\right)}}. \]

- The null hypothesis is that both samples come from the populations with same mean.

- For the two above samples, computations lead to rejection with \(p = 0.002 \).

- This is much smaller than the \(p \)-values 0.01 and 0.05 normally used for rejecting the null hypothesis.

- Therefore, the modified algorithm is statistically significantly better than the original one.
12. Conclusions and Future Work

- Often, we need to reconstruct an image in situations when we do not know the blurring function.
- There exist empirically successful algorithms for such blind image deconvolution.
- While the current methods are reasonably efficient, they are not yet perfect; for example:
 - the current method correctly reconstructs the standard “Cameraman” image from its blurred version,
 - but when we rotated this image, the quality of the reconstruction drastically decreased.
- Making the first-order regularization terms rotation-invariant statistically significantly improves the image.
- It may be a good idea to try a similar replacement for second-order regularization terms.
13. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.