Towards A Neural-Based Understanding of the Cauchy Deviate Method for Processing Interval and Fuzzy Uncertainty

Vladik Kreinovich1 and Hung T. Nguyen2

1Department of Computer Science
University of Texas, El Paso, TX 79968, USA, vladik@utep.edu

2Department of Mathematical Sciences, New Mexico State University,
Las Cruces, NM 88003, USA, hunguyen@nmsu.edu
1. **Practical Need for Uncertainty Propagation**

- **Practical problem:** we are often interested in the quantity \(y \) which is difficult to measure directly.

- **Solution:**
 - estimate easier-to-measure quantities \(x_1, \ldots, x_n \) which are related to \(y \) by a known algorithm \(y = f(x_1, \ldots, x_n) \);
 - compute \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) based on the estimates \(\tilde{x}_i \).

- **Fact:** estimates are never absolutely accurate: \(\tilde{x}_i \neq x_i \).

- **Consequence:** the estimate \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) is different from the actual value \(y = f(x_1, \ldots, x_n) \).

- **Problem:** estimate the uncertainty \(\Delta y \equiv \tilde{y} - y \).
2. Propagation of Probabilistic Uncertainty

- **Fact:** often, we know the probabilities of different values of Δx_i.

- **Example:** Δx_i are independent normally distributed with mean 0 and known st. dev. σ_i.

- **Monte-Carlo approach:**

 - For $k = 1, \ldots, N$ times, we:

 * simulate the values $\Delta x_i^{(k)}$ according to the known probability distributions for x_i;
 * find $x_i^{(k)} = \tilde{x}_i - \Delta x_i^{(k)}$;
 * find $y^{(k)} = f(x_1^{(k)}, \ldots, x_n^{(k)})$;
 * estimate $\Delta y^{(k)} = y^{(k)} - \tilde{y}$.

 - Based on the sample $\Delta y^{(1)}, \ldots, \Delta y^{(N)}$, we estimate the statistical characteristics of Δy.

Practical Need for . . .

Cauchy Deviate . . .

Cauchy Deviate . . .

Werbos’s Idea: Use . . .

We Must Choose a . . .

Main Result
3. Propagation of Interval Uncertainty

- **In practice**: we often do not know the probabilities.
- **What we know**: the upper bounds Δ_i on the measurement errors Δx_i: $|\Delta x_i| \leq \Delta_i$.
- **Enter intervals**: once we know \tilde{x}_i, we conclude that the actual (unknown) x_i is in the interval

$$x_i = [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i].$$

- **Problem**: find the range $y = [y, \bar{y}]$ of possible values of y when $x_i \in x_i$:

$$y = f(x_1, \ldots, x_n) \overset{\text{def}}{=} \{f(x_1, \ldots, x_n) \mid x_1 \in x_1, \ldots, x_n \in x_n\}.$$

- **Fact**: this interval computation problem is, in general, NP-hard.
4. Propagation of Fuzzy Uncertainty

- In many practical situations, the estimates \tilde{x}_i come from experts.
- Experts often describe the inaccuracy of their estimates by natural language terms like "approximately 0.1".
- A natural way to formalize such terms is to use membership functions $\mu_i(x_i)$.
- For each α, we can determine the α-cut
 \[x_i(\alpha) = \{ x_i \mid \mu_i(x_i) \geq \alpha \} . \]
- Natural idea: find $\mu(y)$ for which, for each α, \[y(\alpha) = f(x_1(\alpha), \ldots, x_1(\alpha)) . \]
- So, the problem of propagating fuzzy uncertainty can be reduced to several interval propagation problems.
5. **Need for Faster Algorithms for Uncertainty Propagation**

- For propagating probabilistic uncertainty, there are efficient algorithms such as Monte-Carlo simulations.
- In contrast, the problems of propagating interval and fuzzy uncertainty are computationally difficult.
- It is therefore desirable to design faster algorithms for propagating interval and fuzzy uncertainty.
- The problem of propagating fuzzy uncertainty can be reduced to the interval case.
- Hence, we mainly concentrate on faster algorithms for propagating interval uncertainty.
6. Linearization

- In many practical situations, the errors Δx_i are small, so we can ignore quadratic terms:

$$\Delta y = \tilde{y} - y = f(\tilde{x}_1, \ldots, \tilde{x}_n) - f(x_1, \ldots, x_n) = f(\tilde{x}_1, \ldots, \tilde{x}_n) - f(\tilde{x}_1 - \Delta x_1, \ldots, \tilde{x}_n - \Delta x_n) \approx c_1 \cdot \Delta x_1 + \ldots + c_n \cdot \Delta x_n,$$

where $c_i \overset{\text{def}}{=} \frac{\partial f}{\partial x_i}(\tilde{x}_1, \ldots, \tilde{x}_n)$.

- For a linear function, the largest Δy is obtained when each term $c_i \cdot \Delta x_i$ is the largest:

$$\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n.$$

- Due to the linearization assumption, we can estimate each partial derivative c_i as

$$c_i \approx \frac{f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + h_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) - \tilde{y}}{h_i}.$$
7. Linearization: Algorithm

To compute the range y of y, we do the following.

- First, we apply the algorithm f to the original estimates $\tilde{x}_1, \ldots, \tilde{x}_n$, resulting in the value $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$.
- Second, for all i from 1 to n,
 - we compute $f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + h, \tilde{x}_{i+1}, \ldots, \tilde{x}_n)$ for some small h_i and then
 - we compute
 $$c_i = \frac{f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + h_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) - \tilde{y}}{h_i}.$$
- Finally, we compute $\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n$ and the desired range $y = [\tilde{y} - \Delta, \tilde{y} + \Delta]$.
- **Problem:** we need $n + 1$ calls to f, and this is often too long.
8. Cauchy Deviate Method: Idea

- For large n, we can further reduce the number of calls to f if we Cauchy distributions, w/pdf

$$\rho(z) = \frac{\Delta}{\pi \cdot (z^2 + \Delta^2)}.$$

- Known property of Cauchy transforms:
 - if z_1, \ldots, z_n are independent Cauchy random variables w/parameters $\Delta_1, \ldots, \Delta_n$,
 - then $z = c_1 \cdot z_1 + \ldots + c_n \cdot z_n$ is also Cauchy distributed, w/parameter

$$\Delta = |c_1| \cdot \Delta_1 + \ldots + |c_n| \cdot \Delta_n.$$

- This is exactly what we need to estimate interval uncertainty!
9. Cauchy Deviate Method: Towards Implementation

- To implement the Cauchy idea, we must answer the following questions:
 - how to simulate the Cauchy distribution; and
 - how to estimate the parameter \(\Delta \) of this distribution from a finite sample.

- Simulation can be based on the functional transformation of uniformly distributed sample values:
 \[
 \delta_i = \Delta_i \cdot \tan(\pi \cdot (r_i - 0.5)), \text{ where } r_i \sim U([0, 1]).
 \]

- To estimate \(\Delta \), we can apply the Maximum Likelihood Method
 \[
 \rho(\delta^{(1)}) \cdot \rho(\delta^{(2)}) \cdot \ldots \cdot \rho(\delta^{(N)}) \rightarrow \text{max}, \text{ i.e., solve}
 \]
 \[
 \frac{1}{1 + \left(\frac{\delta^{(1)}}{\Delta} \right)^2} + \ldots + \frac{1}{1 + \left(\frac{\delta^{(N)}}{\Delta} \right)^2} = \frac{N}{2}.
 \]
10. Cauchy Deviates Method: Algorithm

- Apply f to \tilde{x}_i; we get $\tilde{y} := f(\tilde{x}_1, \ldots, \tilde{x}_n)$.
- For $k = 1, 2, \ldots, N$, repeat the following:
 - use the standard RNG to draw $r_{i}^{(k)} \sim U([0, 1])$, $i = 1, 2, \ldots, n$;
 - compute Cauchy distributed values $c_{i}^{(k)} := \tan(\pi \cdot (r_{i}^{(k)} - 0.5))$;
 - compute $K := \max_i |c_{i}^{(k)}|$ and normalized errors $\delta_{i}^{(k)} := \Delta_i \cdot c_{i}^{(k)}/K$;
 - compute the simulated “actual values” $x_{i}^{(k)} := \tilde{x}_i - \delta_{i}^{(k)}$;
 - compute simulated errors of indirect measurement: $\delta^{(k)} := K \cdot \left(\tilde{y} - f \left(x_{1}^{(k)}, \ldots, x_{n}^{(k)} \right) \right)$;
- Compute Δ by applying the bisection method to solve the Maximum Likelihood equation.
11. Important Comment

• To avoid confusion, we should emphasize that:
 – in contrast to the Monte-Carlo solution for the probabilistic case,
 – the use of Cauchy distribution in the interval case is a computational trick,
 – it is not a truthful simulation of the actual measurement error Δx_i.

• Indeed:
 – we know that the actual value of Δx_i is always inside the interval $[-\Delta_i, \Delta_i]$, but
 – a Cauchy distributed random attains values outside this interval as well.
12. Cauchy Deviate Method: Need for Intuitive Explanation

- **Fact:** the Cauchy deviate method is mathematically valid.
- **Problem:** this method is somewhat counterintuitive:
 - we want to analyze errors which are located *instead* a given interval $[-\Delta, \Delta]$, but
 - this analysis use Cauchy simulated errors which are located *outside* this interval.
- It is therefore desirable to come up with an intuitive explanation for this technique.
- In this talk, we show that such an explanation can be obtained from neural networks.
13. **Werbos’s Idea: Use Neurons**

- *Traditionally*: neural networks are used to simulate a deterministic dependence.

- *Paul Werbos* suggested that the same neural networks can be used to describe stochastic dependencies as well.

- *How*: as one of the inputs, we take a random number $r \sim U([0, 1])$.

- *Simplest case*: a single neuron.

- *In this case*: we apply the activation (input-output) function $f(y)$ to the random number r.

- *What we do*: let us analyze the resulting distribution of $f(r)$.

- *Question*: which $f(y)$ should we use?
14. We Must Choose a Family of Functions, Not a Single Function

- **Changing units**: if $f \in F$, then $k \cdot f \in F$.
- **Conclusion**: in mathematical terms, we choose a family F of functions f.
- **Changing starting point**: if $f \in F$, then $f + c \in F$.
- **Non-linear changes**: since NN are useful in non-linear case, we consider $f(y) \to g(f(y))$ for non-linear $g \in G$.
- **Natural requirement**: G is closed under composition and depends on finitely many parameters.
- **Result**: any finite-D group G containing all linear f-s has fractional-linear ones.
- **Conclusion**: $F = \{ g(f(x)) : g \in G \}$.
15. Which Family is the Best?

- **Optimality criterion** is not necessary numerical:
 - we can choose F with smallest approximation error,
 - among such F, the fastest to compute.
- **General idea**: a partial (pre-)order.
- **Shift-invariance**: if $F > G$, then $T_a(F) > T_a(G)$, where $T_a(F) = \{ f(x + a) \mid f \in F \}$.
- **Finality**:
 - if several families are optimal w.r.t. some criterion,
 - we can use this non-uniqueness to select the one with some additional good qualities;
 - in effect, we this change a criterion to a new one in which the optimal family is unique;
 - thus, in the final criterion, there is only one optimal family.
16. Main Result

Theorem.

- Let \(a F \) be optimal in the sense of some optimality criterion that is final and shift-invariant.
- Then \(f \in F \) has the form \(a + b \cdot s_0(K \cdot y + l) \) for some \(a, b, K \) and \(l \), where \(s_0(y) \) is
 - either a linear or fractional-linear function,
 - or \(s_0(y) = \exp(y) \),
 - or the logistic function \(s_0(y) = 1/(1 + \exp(-y)) \),
 - or \(s_0(y) = \tan(y) \).

Comments.

- The logistic function is indeed the most popular activation in NN, but others are also used.
- \(\tan(r) \) leads to the desired Cauchy distribution.
17. Acknowledgments

This work was supported in part:

- by NSF grant HRD-0734825 and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.