Estimating Third Central Moment C_3 for Privacy Case under Interval and Fuzzy Uncertainty

Ali Jalal-Kamali and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
ajalalkamali@miners.utep.edu
vladik@utep.edu
1. Need for Statistical Databases

- We want to cure diseases, we want to eliminate poverty and increase education level.
- It is not always clear what causes certain diseases, which factors affect the income and the education.
- The relation between different phenomena needs to be extracted from the empirical data.
- For this purpose, we maintain large databases.
- Data coming from census help us to understand:
 - how the parents’ income level affects the children’s education level, and
 - how the person education level influences his or her income level.
- Medical data help us understand role of the environment, age, gender in the spread of different diseases.
2. Need to Maintain Privacy in Statistical Databases

- We rarely know beforehand which combinations of factors are important and which are not.
- Therefore, we need to be able to test different hypotheses on the data from this database.
- Different hypotheses require different characteristics.
- So, in principle, we should allow researchers to estimate the values of all these characteristics.
- The problem is that based on these values, we can inadvertently disclose confidential information.
- If we know average blood pressure of folks below certain age, then:
 - from data for two threshold ages,
 - we can extract blood pressure of a person with a given birthday.
3. Intervals as a Way to Preserve Privacy in Statistical Databases

- One way to preserve privacy is:
 - not to store the exact data values – from which a person can be identified – in the database,
 - but rather store *ranges* (intervals).

- For example:
 - instead of recording the exact age of each patient,
 - we only record whether this age is, e.g., between 0 and 10, between 10 and 20, etc.

- In general:
 - we set threshold values t_1, \ldots, t_K, and
 - for each person, we store only the interval $[t_i, t_{i+1}]$ that contains the corresponding value.
4. Need to Estimate Third Central Moment C_3

- To gauge asymmetry of a probability distribution, statisticians use the third central moment.
- This a good measure of symmetry, since for symmetric distributions, this moment is equal to 0.
- Based on the sample values x_1, \ldots, x_n, this central moment is usually estimated as
 \[C_3 = \frac{1}{n} \cdot \frac{1}{n} \sum_{i=1}^{n} (x_i - E)^3, \text{ where } E \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} x_i. \]
- Due to privacy concerns, we only know intervals $x_i = [x_i, \overline{x}_i]$ containing the values x_i.
- Thus, we need to estimate the range of possible values of C_3:
 \[C_3 = \{ C_3(x_1, \ldots, x_n) : x_1 \in x_1, \ldots, x_n \in x_n \}. \]

- Mean $\mu = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$, the simplest statistical characteristic, is an increasing function of all its variables.

- So, its smallest value μ is attained when each of the variables x_i attains its smallest value \underline{x}_i:

$$\mu = \frac{1}{n} \cdot \sum_{i=1}^{n} \underline{x}_i, \quad \overline{\mu} = \frac{1}{n} \cdot \sum_{i=1}^{n} \overline{x}_i.$$

- Other statistical measures are, in general, non-monotonic.

- In general, computing the values of variance, C_3, etc., under interval uncertainty is NP-hard.

- For privacy case, the range of variance, covariance, and correlation can be computed in polynomial time.
6. Computing the Minimum C_3 Can Be Reduced to Computing the Maximum \overline{C}_3

- The function $C_3(x_1, \ldots, x_n)$ is odd, i.e., satisfies the property $C(-x_1, \ldots, -x_n) = -C(x_1, \ldots, x_n)$.
- Thus, for the intervals $-x_i = \{-x_i : x_i \in [x_i, \overline{x}_i]\} = [-\overline{x}_i, -x_i]$, we have
 \[C_3(-x_1, \ldots, -x_n) = -C_3(x_1, \ldots, x_n). \]
- In particular, for the upper endpoint $\overline{C}_3(-x_1, \ldots, -x_n)$, we get:
 \[\overline{C}_3(-x_1, \ldots, -x_n) = -\overline{C}_3(x_1, \ldots, x_n). \]
- Thus, if we can compute the upper endpoint for any set of intervals, we can compute the lower endpoint as
 \[\underline{C}_3(x_1, \ldots, x_n) = -\overline{C}_3(-x_1, \ldots, -x_n). \]
- Because of this possibility, in the following text, we will concentrate on computing the upper endpoint \overline{C}_3.
7. When a Function Attains Maximum on the Interval: Known Facts from Calculus

- A function \(f(x) \) attains its maximum on \([x, \bar{x}]\) either at one of its endpoints, or at some internal point.

- If it attains its maximum at a point \(x \in (x, \bar{x}) \), then its derivative at this point is 0: \(\frac{df}{dx} = 0 \).

- If maximum is at \(x = \bar{x} \), then we cannot have \(\frac{df}{dx} < 0 \): then \(f(\bar{x} - \Delta x) > f(\bar{x}) \).

- Thus, in this case, we must have \(\frac{df}{dx} \geq 0 \).

- Similarly, if a function \(f(x) \) attains its maximum at the point \(x = x \), then we must have \(\frac{df}{dx} \leq 0 \).
8. Known Facts from Calculus: Conclusion

- Thus, for each function \(f(x) \), we have three possibilities for the point \(x \) where \(f(x) \) attains its maximum:

 - the first possibility is that \(\underline{x} < x < \overline{x} \) and \(\frac{df}{dx} = 0 \);

 - the second possibility is that \(x = \overline{x} \) and \(\frac{df}{dx} \geq 0 \);

 - the third possibility is that \(x = \underline{x} \) and \(\frac{df}{dx} \leq 0 \).
9. Let Us Apply These Facts to Our Problem

- Here, \(\frac{\partial C_3}{\partial x_i} = \frac{3}{n} \cdot (x_i - E)^2 - \frac{3}{n^2} \cdot \sum_{j=1}^{n} (x_j - E)^2 = \frac{3}{n^2} \cdot ((x_i - E)^2 - \sigma^2) \), where \(\sigma^2 \) \(\text{def} \) \(\frac{1}{n} \cdot \sum_{j=1}^{n} (x_j - E)^2 \).

- So, \(\frac{\partial C_3}{\partial x_i} = 0 \) if and only if \(|x_i - E| = \sigma \), i.e., if and only if
 \[x_i = E - \sigma \text{ or } x_i = E + \sigma. \]

- \(\frac{\partial C_3}{\partial x_i} \geq 0 \) if and only if \(|x_i - E| \geq \sigma \), i.e., if and only if
 \[x_i \leq E - \sigma \text{ or } x_i \geq E + \sigma; \]

- \(\frac{\partial C_3}{\partial x_i} \leq 0 \) if and only if \(|x_i - E| \leq \sigma \), i.e., if and only if
 \[E - \sigma \leq x_i \leq E + \sigma. \]
10. Analysis (cont-d)

- For each i, at a point (x_1, \ldots, x_n) where C_3 attains its maximum, we get one of the three options:
 1. $x_i < x < \bar{x}$ and either $x = E - \sigma$ or $x = E + \sigma$;
 2. $x = \bar{x}$ and either $x \leq E - \sigma$ or $x \geq E + \sigma$;
 3. $x = x$ and $E - \sigma \leq x \leq E + \sigma$.

- Let i_\pm denote the number of the zone containing $E \pm \sigma$.

- Let us consider all possible locations of the interval $[t_k, t_{k+1}]$ w.r.t. $E \pm \sigma$.

- If $[t_k, t_{k+1}]$ is to the right of $E + \sigma$, then we cannot have options 1 and 3, so $x_i = \bar{x}$.

- Similarly, for all the intervals $[t_k, t_{k+1}]$ except for $k = i_+$, we have a single option for x_i.

- For the interval $k = i_+$, we have all three possible options for each variable x_i.
11. Towards a Feasible Algorithm: Idea

- For each \(k \), let us denote, by \(n_k \), the number of intervals \(x_i \) that coincide with \([t_k, t_{k+1}]\).
- For \(k = i_+ \), in principle, we have three options for each of \(n_k \) indices \(i \), to the total of \(3^{n_k} \) possible assignments.
- This number of assignments is non-feasibly large.
- However, since all \(n_k \) intervals are identical, what matters is how many get assigned.
- In the case of \(i_- < i_+ \), what matters is:
 - how many values \(x_i \) get assigned the value \(x_i = \underline{x}_i \); let us denote this number by \(\underline{n} \);
 - how many values \(x_i \) get assigned the value \(x_i = \overline{x}_i \); let us denote this number by \(\overline{n} \); and
 - how many values \(x_i \) get assigned the value \(x_i = E + \sigma \); this number is equal to \(n - \underline{n} - \overline{n} \).
12. Towards a Feasible Algorithm (cont-d)

• Similarly, when $i_- = i_+$, what matters is:

 – how many values x_i get assigned the value $x_i = E - \sigma$; let us denote this number by $n_-;$

 – how many values x_i get assigned the value $x_i = E + \sigma$; let us denote this number by $n_+;$ and

 – how many values x_i get assigned the value $x_i = \bar{x}_i$; this number is equal to $n - n_- - n_+.$

• For each combination of such values n, \bar{n} (or n_-, n_+), we assign values $E - \sigma$ and/or $E + \sigma$ to some x_i.

• Problem: we do not know the values E and σ.
13. How to Find E and σ?

- The average of all selected values x_i should be equal to E.
- So, the sum $\sum x_i$ of all selected values x_i should be equal to $n \cdot E$.
- Thus, $n \cdot E$ is a linear combination of values $E - \sigma$, $E + \sigma$, and known values like x_i and \bar{x}_i.
- We can use this equality to express E as a linear function of σ: $E = E(\sigma)$.
- The average value of x_i^2 should be equal to $\sigma^2 + E^2$.
- The sum $\sum x_i^2$ of the squares of all selected values x_i should be equal to $n \cdot (E^2 + \sigma^2)$.
- Plugging in $E(\sigma)$, we get a quadratic equation in terms of σ, from which we can determine σ.
- After that, we can find $E = E(\sigma)$.
14. Resulting Algorithm

- We have thresholds t_1, \ldots, t_K; for each k, we know the number n_k of records of the type $[t_k, t_{k+1}]$.
- Let $t_0 \overset{\text{def}}{=} -\infty$ and $t_{K+1} \overset{\text{def}}{=} +\infty$.
- For each pair of zones $i_– < i_+$, for each $n \geq 0$, $\bar{n} \geq 0$ s.t. $n + \bar{n} \leq n_{i_+}$, we:
 - compute the values

\[N = n - n_{i_–} - (n_{i_+} - n - \bar{n}), \]
\[S = \sum_{k=1}^{t_{i_–}-1} n_k \cdot t_{k+1} + \sum_{k=i_{-}+1}^{i_+-1} (n_k \cdot t_k) + n \cdot t_{i_+} + \bar{n} \cdot t_{i_+ + 1} + \]
\[\sum_{k=i_+ + 1}^{K-1} n_k \cdot t_{k+1}, \]
\[M = -n_{i_–} + (n_{i_+} - n - \bar{n}); \]
• find σ from the quadratic equation

$$n \cdot \sigma^2 + n \cdot \left(\frac{S + M \cdot \sigma}{N} \right)^2 = S_2 + n_{i-} \cdot \left(\frac{S + (M - N) \cdot \sigma}{N} \right)^2 + (n_{i+} - n - \bar{n}) \cdot \left(\frac{S + (M + N) \cdot \sigma}{N} \right)^2;$$

• for each solution σ, we compute $E = \frac{S + M \cdot \sigma}{N}$; if $E \pm \sigma$ are in the corr. zones, we compute

$$C_3 = \sum_{k=1}^{t_{i-1}} n_k \cdot (t_{k+1} - E)^3 + n_{i-} \cdot (-\sigma)^3 +$$

$$\sum_{k=i_{-1}+1}^{i_{+1}-1} n_k \cdot (t_k - E)^3 + n \cdot (t_{i+} - E)^3 +$$

$$\bar{n} \cdot (t_{i+1} - E)^3 + (n_{i+} - n - \bar{n}) \cdot \sigma^3 +$$

$$\sum_{k=i_{+1}+1}^{K-1} n_k \cdot (t_{k+1} - E)^3.$$
15. Algorithm (cont-d)

- For each pair $i_- = i_+$, for each pair $n_- \geq 0$, $n_+ \geq 0$ s.t. $n_- + n_+ \leq n_{i_+}$, we:

 - compute the values $N = n - n_- - n_+$,

 $$S = \sum_{k=1}^{t_{i_+}-1} n_k \cdot t_{k+1} + (n - n_- - n_+) \cdot t_{i_+} + 1 +$$

 $$\sum_{k=i_+ + 1}^{K-1} n_k \cdot t_{k+1},$$

 $$M = -n_- + n_+;$$

- find σ from the quadratic equation

 $$n \cdot \sigma^2 + n \cdot \left(\frac{S + M \cdot \sigma}{N} \right)^2 = S_2 + n_- \cdot (E - \sigma)^2 +$$

 $$n_+ \cdot (E + \sigma)^2;$$
• for each solution \(\sigma \), if \(E \pm \sigma \) are in corresponding zones, we compute

\[
C_3 = \sum_{k=1}^{t_{i+1} - 1} n_k \cdot (t_{k+1} - E)^3 + n_- \cdot (-\sigma)^3 + n_+ \cdot \sigma^3 +
\]

\[
(n - n_- - n_+) \cdot (t_{i+1} - E)^3 + \sum_{k=i+1}^{K-1} n_k \cdot (t_{k+1} - E)^3.
\]

• We then return the largest of all computed values \(C_3 \) as the desired maximum \(\overline{C}_3 \).
16. Computation Time of the Proposed Algorithm

- We have K zones.
- Thus, we have K^2 pairs of zones.
- For each pair of zones, we consider pairs of natural numbers $\langle n, \overline{n} \rangle$ whose sum does not exceed n_{i+}.
- Since $n_{i+} \leq n$, each of these numbers n, \overline{n} does not exceed the total number of records n.
- There are this $\leq n$ possible values of n, and $\leq n$ possible values of \overline{n}.
- Therefore, the total number of such pairs does not exceed n^2.
- For each pair, computations take time $O(K)$.
- So overall, this algorithm requires time which is quadratic in n: $O(n^2)$.
17. Need for Fuzzy Uncertainty

- So far, we assumed that we know exactly whether the age is between 0 and 10, between 10 and 20, etc.

- This makes sense if we start with an exact age and replace it with an interval to preserve privacy.

- In some practical situations, we only have an expert’s impression of the age.

- An expert can say that the age is most probably between 10 and 20.

- We then have membership functions s.t. $\mu_k(x) = 1$ for $x \in [t_k, t_{k+1}]$ and $\mu_k(x) > 0$ for some $x \not\in [t_k, t_{k+1}]$.

- In this case, we can apply Zadeh’s extension principle get a fuzzy number corresponding to C_3.
18. From Interval to Fuzzy Uncertainty

Zadeh’s extension principle for \(y = f(x_1, \ldots, x_n) \) can be described via \(\alpha \)-cuts \(x_i(\alpha) = \{ x_i : \mu_i(x_i) \geq \alpha \} \):

\[
y(\alpha) = \{ f(x_1, \ldots, x_n) : x_1 \in x_1(\alpha), \ldots, x_n \in x_n(\alpha) \}.
\]

Thus, estimating \(C_3 \) under fuzzy uncertainty can be reduced to several interval problems corr. to different \(\alpha \).

For \(\alpha < 1 \), we have wider (and thus, intersecting) intervals \(t_k(\alpha) = [t_k(\alpha), \bar{t}_k(\alpha)] \).

Since these intervals intersect, each value \(x \) may be covered by several intervals of this type.

It is reasonable to assume that at most two such intervals can contain each point \(x \).

In other words, while we have \(\bar{t}_k(\alpha) > t_{k+1}(\alpha) \), we should also have \(\bar{t}_k(\alpha) < t_{k+2}(\alpha) \).
19. From Interval to Fuzzy Uncertainty (cont-d)

- Now, have two different intervals containing $E - \sigma$ and two different intervals containing $E + \sigma$.
- For $E - \sigma$, this is not a serious issue, this would simply mean that for both intervals, we select $E - \sigma$.
- For $E + \sigma$, we have to select two pairs of natural numbers corresponding to both intervals containing $E + \sigma$.
- Selecting two pairs of numbers means selecting four natural numbers ≤ n.
- As a result, we get an algorithm similar to the above one, but with computation time $O(n^4)$.
- This is much larger than the previous $O(n^2)$ time.
20. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and DUE-0926721,
- by Grants 1 T36 GM078000-01 and 1R43TR000173-01 from the National Institutes of Health, and
- by a grant on F-transforms from the Office of Naval Research.