Towards a Better Understanding of Space-Time Causality: Kolmogorov Complexity and Causality as a Matter of Degree

Vladik Kreinovich¹ and Andres Ortiz²

¹Department of Computer Science
²Departments of Mathematical Sciences and Physics
University of Texas at El Paso, El Paso, TX 79968, USA
aortiz19@miners.utep.edu, vladik@utep.edu
1. Defining Causality Is Important

- Causal relation \(e \preceq e' \) between space-time events is one of the fundamental notions of physics.

- In Newton's physics, it was assumed that influences can propagate with an arbitrary speed:
 \[
 e = (t, x) \preceq e' = (t', x') \iff t \leq t'.
 \]

- In Special Relativity, the speeds of all the processes are limited by the speed of light \(c \):
 \[
 e = (t, x) \preceq e' = (t', x') \iff c \cdot (t' - t) \geq d(x, x').
 \]

- In the General Relativity Theory, the space-time is curved, so the causal relation \(\preceq \) is even more complex.

- Different theories, in general, make different predictions about the causality \(\preceq \).

- So, to experimentally verify fundamental physical theories, we need to experimentally check whether \(e \preceq e' \).
2. Defining Causality: Challenge

- Intuitively, \(e \preceq e' \) means that:
 - what we do in the vicinity of \(e \)
 - changes what we observe at \(e' \).
- If we have two (or more) copies of the Universe, then:
 - in one copy, we perform some action at \(e \), and
 - we do not perform this action in the second copy.
- If the resulting states differ, this would indicate \(e \preceq e' \):

<table>
<thead>
<tr>
<th>World 1</th>
<th>World 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>rain</td>
<td>rain dance</td>
</tr>
<tr>
<td>(e')</td>
<td>no rain</td>
</tr>
<tr>
<td>(e)</td>
<td>no rain dance</td>
</tr>
</tbody>
</table>

- Alas, in reality, we only observe one Universe, in which we either perform the action or we do not.
3. Algorithmic Randomness and Kolmogorov Complexity: A Brief Reminder

- If we flip a coin 1000 times and still get all heads, common sense tells us that this coin is not fair.
- Similarly, if we repeatedly flip a fair coin, we cannot expect a periodic sequence 0101…01 (500 times).
- Traditional probability theory does not distinguish between random and non-random sequences.
- Kolmogorov, Solomonoff, Chaitin: a sequence 0…0 isn’t random since it can be printed by a short program.
- In contrast, the shortest way to print a truly random sequence is to actually print it bit-by-bit: \texttt{printf}(01…).
- Let an integer $C > 0$ be fixed. We say that a string x is random if $K(x) \geq \text{len}(x) - C$, where
 \[
 K(x) \overset{\text{def}}{=} \min \{\text{len}(p) : p \text{ generates } x\}.
 \]
4. The Corresponding Notion of Independence

- If y is independent on x, then knowing x does not help us generate y.

- If y depends on x, then knowing x helps compute y; example:
 - knowing the locations and velocities x of a mechanical system at time t
 - helps compute the locations and velocities y at time $t + \Delta t$.

- Let an integer $C > 0$ be fixed. We say that a string y is independent of x if $K(y \mid x) \geq K(y) - C$, where
 \[K(y \mid x) \overset{\text{def}}{=} \min\{\text{len}(p) : p(x) \text{ generates } y}\].

- We say that a string y is dependent on the string x if
 \[K(y \mid x) < K(y) - C. \]
5. How to Define Space-Time Causality: First Seemingly Reasonable Idea

• At first glance, we can check whether \(e \preceq e' \) as follows:
 - First, we perform observations and measurements in the vicinity of the event \(e \), and get the results \(x \).
 - We also perform measurements and observations in the vicinity of the event \(e' \), and produce \(x' \).
 - If \(x' \) depends on \(x \), i.e., if \(K(x' \mid x) \ll K(x') \), then we claim that \(e \) can casually influence \(e' \).

• If \(e \preceq e' \), then indeed knowing what happened at \(e \) can help us predict what is happening at \(e' \).

• However, the inverse is not necessarily true.

• We may have \(x \approx x' \) because both \(e \) and \(e' \) are influenced by the same past event \(e'' \).

• Example: both \(e \) and \(e' \) receive the same signal from \(e'' \).
6. Towards a Working Definition of Causality

- According to modern physics, the Universe is quantum in nature; for microscopic measurements:
 - we cannot predict the exact measurement results,
 - we can only predict probabilities of different outcomes; the actual observations are truly random.
- For each space-time event e:
 - we can set up such a random-producing experiment in the small vicinity of e, and
 - generate a random sequence r_e.
- This random sequence r_e can affect future results.
- So, if we know the random sequence r_e, it may help us predict future observations.
- Thus, if $e \ll e'$, then for some observations x' performed in the small vicinity of e', we have $K(x' | r_e) \ll K(x')$.
7. Discussion and Resulting Definition

- **Reminder:** when \(e \preceq e' \), then the random sequence \(r_e \) can affect the measurement results at \(e' \):
 \[
 K(x' \mid r_e) \ll K(x').
 \]

- If \(e \not\preceq e' \), then the random sequence \(r_e \) cannot affect the measurement results at \(e' \):
 \[
 K(x' \mid r_e) \approx K(x').
 \]

- So, we arrive at the following semi-formal definition:
 - For a space-time event \(e \), let \(r_e \) denote a random sequence generated in the small vicinity of \(e \).
 - We say \(e \preceq e' \) if for some observations \(x' \) performed in the small vicinity of \(e' \), we have
 \[
 K(x' \mid r_e) \ll K(x').
 \]

- Our definition follows the ideas of causality as *mark transmission*, with the random sequence as a mark.
8. This Definition Is Consistent with Physical Intuition

- If $e \preceq e'$, then we can send all the bits of r_e from e to e'.
- The signal x' received in the vicinity of e' will thus be identical to r_e.
- Thus, generating x' based on r_e does not require any computations at all: $K(x' \mid r_e) = 0$.
- Since the sequence $x' = r_e$ is random, we have $K(x') \geq \text{len}(x') - C$.
- When $r_e = x'$ is sufficiently long ($\text{len}(x') > 2C$), we have $K(x') \geq \text{len}(x') - C > 2C - C = C$, hence $0 = K(x' \mid r_e) < K(x') - C$ and $K(x' \mid r_e) \ll K(x')$.
- So, our definition is indeed in accordance with the physical intuition.
9. Randomness Is a Matter of Degree

- **Reminder**: a sequence x is random if $K(x) \geq \text{len}(x) - C$ for some $C > 0$.

- For a given sequence x, its **degree of randomness** $d(x)$ can be defined by the smallest integer C for which

 $$K(x) \geq \text{len}(x) - C.$$

- One can check that this smallest integer is equal to the difference $d(x) = \text{len}(x) - K(x)$.

- For *random* sequences, the degree $d(x)$ is small.

- For sequences which are *not random*, the degree $d(x)$ is large.

- In general, the smaller the difference $d(x)$, the more random is the sequence x.
10. Space-Time Causality Is a Matter of Degree

- Our definition of causality is that $K(x' | r_e) < K(x') - C$ for some large integer C.
- The larger the integer C, the more confident we are that an event e can causally influence e'.
- It is therefore reasonable to define a degree of causality $c(e, e')$ as the largest integer C for which
 \[K(x' | r_e) < K(x') - C. \]
- One can check that this largest integer is equal to the difference $c(e, e') = K(x') - K(x' | r_e) - 1$.
- The larger this difference $c(e, e')$, the more confident we are that e can influence e'.
- In other words, just like randomness turns out to be a matter of degree, causality is also a matter of degree.
11. Remaining Open Problems

- It is desirable to explore possible physical meaning of such “degrees of causality” $c(e, e')$.

- Maybe this function $c(e, e')$ is related to relativistic metric – the amount of proper time between e and e'?

- Another open problem: the above definition works for objects in a small vicinity of one spatial location.

- In quantum physics, not all objects are localized in space-time.

- We can have situations when the states of two spatially separated particles are entangled.

- It is desirable to extend our definition to such objects as well.
12. Conclusions

- We propose a new operationalist definition of causality \(e \preceq e' \) between space-time events \(e \) and \(e' \).
- Namely, to check whether an event \(e \) can casually influence an event \(e' \), we:
 - generate a truly random sequence \(r_e \) in the small vicinity of the event \(e \), and
 - perform observations in the small vicinity of the event \(e' \).
- If some observation results \(x' \) (obtained near \(e' \)) depend on \(r_e \), then we claim that \(e \preceq e' \).
- On the other hand, if all observation results \(x' \) are independent on \(r_e \), then we claim that \(e \npreceq e' \).
- This new definition naturally leads to a conclusion that space-time causality is a matter of degree.
13. Acknowledgments

This work was supported in part:

• by the National Science Foundation grants HRD-0734825 (Cyber-ShARE Center of Excellence) and DUE-0926721,

• by Grant 1 T36 GM078000-01 from the National Institutes of Health, and

• by a grant on F-transforms from the Office of Naval Research.

The authors are thankful:

• to John Symons for valuable discussions, and

• to the anonymous referees for useful suggestions.