Sparse Fuzzy Techniques Improve Machine Learning

Reinaldo Sanchez1, Christian Servin1,2, and Miguel Argaez1

1Computational Science Program
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
reinaldosanar@gmail.com, christians@utep.edu
margaez@utep.edu

2Information Technology Department
El Paso Community College, El Paso, Texas, USA
1. Machine Learning: A Typical Problem

- In machine learning:
 - we know how to classify several known objects, and
 - we want to learn how to classify new objects.

- For example, in a biomedical application:
 - we have microarray data corresponding to healthy cells and
 - we have microarray data corresponding to different types of tumors.

- Based on these samples, we would like to be able, given a microarray data, to decide
 - whether we are dealing with a healthy tissue or with a tumor, and
 - if it is a tumor, what type of cancer does the patient have.

- Each object is characterized by the results \(x = (x_1, \ldots, x_n) \) of measuring several \((n) \) different quantities.

- So, in mathematical terms, machine learning can be described as a following problem:

 - we have \(K \) possible labels 1, \ldots, \(K \) describing different classes;
 - we have several vectors \(x(j) \in \mathbb{R}^n, j = 1, \ldots, N; \)
 - each vector is labeled by an integer \(k(j) \) ranging from 1 to \(K; \)
 - vectors labeled as belonging to the \(k \)-th class will be also denoted by \(x(k, 1), \ldots, x(k, N_k); \)
 - we want to use these vectors to assign, to each new vector \(x \in \mathbb{R}^n, \) a value \(k \in \{1, \ldots, K\} \).

- Often, each class C_k is *convex*: if $x, x' \in C_k$ and $\alpha \in (0, 1)$, then $\alpha \cdot x + (1 - \alpha) \cdot x' \in C_k$.

- It all C_k are convex, then we can separate them by using linear separators.

- For example, for $K = 2$, there exists a linear function $f(x) = c_0 + \sum_{i=1}^{n} c_i \cdot x_i$ and a threshold value y_0 such that:
 - for all vectors $x \in C_1$, we have $f(x) < y_0$, while
 - for all vectors $x \in C_2$, we have $f(x) > y_0$.

- This can be used to assign a new vector x to an appropriate class: $x \rightarrow C_1$ if $f(x) < y_0$, else $x \rightarrow C_2$.

- For $K > 2$, we can use linear functions separating different pairs of classes.

- In practice, the classes C_k are often not convex.
- As a result, we need nonlinear separating functions.
- The first such separating functions came from simulating (non-linear) biological neurons.
- Even more efficient algorithms originate from the Taylor representation of a separating function:

$$f(x_1, \ldots, x_n) = c_0 + \sum_{i=1}^{n} c_i \cdot x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot x_i \cdot x_j + \ldots$$

- This expression becomes linear if we add new variables $x_i \cdot x_j$, etc., to the original variables x_1, \ldots, x_n.
- The corresponding Support Vector Machine (SVM) techniques are the most efficient in machine learning.
- For example, SVM is used to automatically diagnose cancer based on the microarray gene expression data.
5. There Is Room for Improvement

- In SVM, we divide the original samples into a training set and a training set.
- We train an SVM method on the training set.
- We test the resulting classification on a testing set.
- Depending on the type of tumor, 90 to 100% correct classifications.
- 90% is impressive, but it still means that up to 10% of all the patients are misclassified.
- How can we improve this classification?
6. Our Idea

- Efficient linear algorithms are based on an assumption that all the classes C_k are convex.
- In practice, the classes C_k are often not convex.
- SVM uses (less efficient) general nonlinear techniques.
- Often, while the classes C_k are not exactly convex, they are somewhat convex:
 - for many vectors x and x' from each class C_k and for many values α,
 - the convex combination $\alpha \cdot x + (1-\alpha) \cdot x'$ still belongs to C_k.
- In this talk, we use fuzzy techniques to formalize this imprecise idea of “somewhat” convexity.
- We show that the resulting machine learning algorithm indeed improves the efficiency.
7. Need to Use Degrees

- “Somewhat” convexity means that if \(x, x' \in C_k \), then \(\alpha \cdot x + (1 - \alpha) \cdot x' \in C_k \) with some degree of confidence.
- Let \(\mu_k(x) \) denote our degree of confidence that \(x \in C_k \).
- We arrive at the following fuzzy rule: If \(x, x' \in C_k \) and convexity holds, then \(\alpha \cdot x + (1 - \alpha) \cdot x' \in C_k \).
- If we use product for “and”, we get
 \[
 \mu_k(\alpha \cdot x + (1 - \alpha) \cdot x') \geq r \cdot \mu_k(x) \cdot \mu_k(x').
 \]
- So, if \(x'' \) is a convex combination of two sample vectors, then \(\mu_k(x'') \geq r \cdot 1 \cdot 1 = r \).
- For combination of three sample vectors, \(\mu_k(x'') \geq r^2 \).
- For \(y = \sum_{j=1}^{N_k} \alpha_j \cdot x(k, j) \), we have \(\mu_k(y) \geq r^{||\alpha||_0 - 1} \), where \(||\alpha||_0 \) is the number of non-zero values \(\alpha_j \).
8. Using Closeness

- If $y \in C_k$ and x is close to y, then $x \in C_k$ with some degree of confidence.

- In probability theory, Central Limit Theorem leads to Gaussian degree of confidence.

- We thus assume that the degree of confidence is described by a Gaussian expression $\exp \left(-\frac{\|x - y\|^2}{2\sigma^2} \right)$.

- As a result, for every two vectors x and y, we have
 \[
 \mu_k(x) \geq \mu_k(y) \cdot \exp \left(-\frac{\|x - y\|^2}{2\sigma^2} \right).
 \]
9. Combing Both Formulas

- Resulting formula: \(\mu_k(x) \geq \tilde{\mu}_k(x) \), where:

\[
\tilde{\mu}_k(x) \overset{\text{def}}{=} \max_{\alpha} \exp \left(- \frac{\| x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k, j) \|^2}{2\sigma^2} \cdot \frac{r\|\alpha\|_0 - 1}{r} \right).
\]

- To classify a vector \(x \), we:
 - compute \(\tilde{\mu}_k(x) \) for different classes \(k \), and
 - select the class \(k \) for which \(\tilde{\mu}_k(x) \) is the largest.

- This is equivalent to minimizing \(L_k(x) = -\ln(\tilde{\mu}_k(x)) \):

\[
L_k(x) = C \cdot \left\| x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k, j) \right\|^2_2 + \|\alpha\|_0.
\]
10. Towards an Efficient Algorithm

- **Reminder:** we minimize \(C \cdot \left\| x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j) \right\|_2^2 + \| \alpha \|_0. \)

- **Lagrange multipliers:** this is equiv. to minimizing \(\| \alpha \|_0 \) under the constraint \(\left\| x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j) \right\|_2^2 \leq C. \)

- **Problem:** minimizing \(\| \alpha \|_0 \) is, in general, NP-hard.

- **Good news:** often, minimizing \(\| \alpha \|_0 \) is equivalent to minimizing \(\| \alpha \|_1 \overset{\text{def}}{=} \sum_{j=1}^{N_k} |\alpha_j|. \)

- **Resulting algorithm:** minimize

\[
C' \cdot \left\| x - \sum_{j=1}^{N_k} \alpha_j \cdot x(k,j) \right\|_2^2 + \| \alpha \|_1.
\]
11. Taking the Specific Problem into Account

• For microarray analysis, the actual values of the vector x depend on the efficiency of the microarray technique.

• In other words, with a less efficient technique, we will get $\lambda \cdot x$ for some constant λ.

• From this viewpoint, it is reasonable to use:

 - not just convex combinations, but also

 - arbitrary linear combinations of the original vectors $x(k, j)$.
12. Towards an Efficient Algorithm (cont-d)

• We repeat ℓ_1-minimization for each of K classes.
• While ℓ_1-minimization is efficient, it still takes a large amount of computation time; so:
 – instead of trying to represent the vector x as a linear combination of vectors from each class,
 – let us look for a representation of x as a linear combination of all sample vectors, from all classes:

$$
C' \cdot \left\| x - \sum_{j=1}^{N} \alpha_j \cdot x(j) \right\|^2_2 + \| \alpha \|_1 \rightarrow \min.
$$

• Then, for each class k, we only take the components belonging to this class, and select k for which

$$
\left\| x - \sum_{j:k(j)=k} \alpha_j \cdot x(j) \right\|^2_2 \rightarrow \min.
$$
13. Interesting Observation

- This time-saving idea not only increased the efficiency, it also improve the quality of classification.
- We think that this improvement is related to the fact that all the data contain measurement noise.
- On each computation step, we process noisy data.
- Hence, the results get noisier and noisier with each computation step.
- From this viewpoint, the longer computations, the more noise we add.
- By speeding up computation, we thus decrease the noise.
- This compensates a minor loss of optimality, when we replacing K minimizations with a single one.
14. Results

- The probability p of correct identification increased:
 - for brain tumor, p increased from 90% for the best SVM techniques to 91% for our method;
 - for prostate tumor, the probability p similarly increased from 93% to 94%.

- Our method has an additional advantage:
 - to make SVM efficient, we need to select appropriate nonlinear functions;
 - if we select arbitrary functions, we usually get not-so-good results;
 - in contrast, our sparse method has only one parameter to tune: the parameter C'.

- Our technique is this less subjective, more reliable – and leads to better (or similar) classification results.
15. A Paper with Detailed Description of Results