Fuzzy Techniques Explain Empirical Power Law Governing Wars and Terrorist Attacks

Hung T. Nguyen1, Kittawit Autchariyapanitkul2, and Vladik Kreinovich3

1Dept. of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, USA, and Faculty of Economics, Chiang Mai University, Thailand, hunguyen@nmsu.edu

2Faculty of Economics, Maejo University, Chiang Mai, Thailand, kittar3@hotmail.com

3Dept. of Computer Science, University of Texas at El Paso, El Paso, Texas 79968, USA, vladik@utep.edu
1. Empirical Law Governing Wars

• A war is defined as a conflict with at least 1000 casualties.

• The number $\rho(n)$ of wars with n casualties is

$$\rho(n) \sim c \cdot n^{-2.5}.$$

• The same power law describes events with fewer casualties, e.g., terrorist attacks.

• Why? There is no convincing theoretical explanation for the specific exponent 2.5.

• In this talk, we show that the use of fuzzy techniques can explain this value.
2. Analysis of the Problem

- Our objective is to explain why, of all possible power laws \(\rho(n) \sim n^{-\alpha} \), wars are described by \(\alpha = 2.5 \).
- First idea – the overall expected number of casualties is finite: \(\mu \overset{\text{def}}{=} \int n \cdot \rho(n) \, dn < +\infty \).
- For \(\rho(n) \sim n^{-\alpha} \), the integral of \(n^{1-\alpha} \) is \(\sim n^{2-\alpha} \).
- This integral is finite when \(\alpha > 2 \).
- Second idea: it is very difficult to predict wars or terrorist attacks.
- This statement makes sense from the viewpoint of common sense.
- However, from the viewpoint of the corresponding probabilistic model, this sounds strange.
- Indeed, the whole purpose of statistical data analysis is to make predictions.
3. Analysis of the Problem (cont-d)

- Yes, sometimes we do not know the probability distribution; in such cases, of course, prediction is difficult.

- But here, we know exactly the probability distribution – so why is prediction difficult?

- The answer lies in the fact that:
 - the accuracy of most statistics-based predictions
 - is described in terms of the corresponding standard deviation \(\sigma \).

- This can be shown on the example of using arithmetic average as an estimate for the mean.

- For the usual normal distributions:
 - standard deviations are finite (and usually small),
 - so we can have reasonably accurate predictions.
4. Analysis of the Problem (cont-d)

- However, for many power laws, \(V = \infty \) (hence \(\sigma = \infty \)).
- So, accurate predictions are not possible.
- That \(V \) may be infinite is not surprising: for the power law, even the mean \(\mu \) may be infinite.
- In these terms, the idea that wars are difficult to predict seems to indicate that \(V = \infty \).
- \(V = M_2 - \mu^2 \), where \(M_2 \overset{\text{def}}{=} \int n^2 \cdot \rho(n) \, dn \).
- Since \(\mu \) is finite, \(V = \infty \) means \(M_2 = \infty \).
- For \(\rho(n) \sim n^{-\alpha} \), the integral \(M_2 \) is \(\sim n^{3-\alpha} \).
- So, the integral is infinite when \(\alpha < 3 \).
- Conclusion: \(\alpha \in (2, 3) \).
5. Why Fuzzy?

• At first glance, we have a very crisp description of the situation: $\alpha \in (2, 3)$.

• However, the situation is not as crisp as it may seem.

• As α gets closer and closer to 2, the expected value becomes larger and larger – and thus, unrealistic.

• It is thus not enough to require that the expected number of losses is finite.

• We also must require that this expected value is not too large.

• So, we require that α is significantly larger than 2.

• Here comes fuzziness: “not too large” is not a precise term, as well as “significantly larger”.

• Similarly, instead of a seemingly crisp inequality $\alpha < 3$, we have, in reality, a fuzzy inequality.
6. Let Us Use Fuzziness

- We want to make sure that both differences $\alpha - 2$ and $3 - \alpha$ are positive – in some fuzzy sense.

- Let $\mu(x)$ be a membership function that describes this “positiveness”.

- The larger the positive number, the more confident we are that this number is common-sense positive.

- Thus, the function $\mu(x)$ should be increasing with x.

- For each α:

 - the degree to which the first inequality is satisfied is equal to $\mu(\alpha - 2)$, and

 - the degree to which the second inequality is satisfied is equal to $\mu(3 - \alpha)$.

- The degree $d(\alpha)$ to which both conditions are satisfied is thus equal to $f_\& (\mu(\alpha - 2), \mu(3 - \alpha))$.

7. Using Fuzziness (cont-d)

- It is reasonable to select α for which we are the most confident that both inequalities are satisfied:

$$d(\alpha) \to \text{max}.$$

- We have no a priori reason to select one or another “and”-operations.

- Let us thus et us select the computationally simplest one $f_\& (a, b) = \min(a, b)$.

- In this case, $d(\alpha) = \min(\mu(\alpha - 2), \mu(3 - \alpha))$.

- We can prove that this expression attains its maximum when $\alpha = 2.5$.

- Indeed, for this α, $d(\alpha) = \min(\mu(0.5), \mu(0.5)) = \mu(0.5)$.

- On the other hand, for any value $\alpha < 2.5$, we have $\alpha - 2 < 0.5 < 3 - \alpha$.
8. Using Fuzziness: Proof

• For \(\alpha < 2.5 \), we have \(\alpha - 2 < 0.5 < 3 - \alpha \).

• Thus, due to monotonicity of \(\mu(x) \), we have
 \[\mu(\alpha - 2) < \mu(0.5) < \mu(3 - \alpha) \]
 and hence,
 \[\min(\mu(\alpha - 2), \mu(3 - \alpha)) = \mu(\alpha - 2) < \mu(0.5). \]

• Similarly, for any \(\alpha > 2.5 \), we have \(3 - \alpha < 0.5 < \alpha - 2 \).

• Thus, due to monotonicity of \(\mu(x) \), we have
 \[\mu(3 - \alpha) < \mu(0.5) < \mu(\alpha - 2) \]
 and hence,
 \[\min(\mu(\alpha - 2), \mu(3 - \alpha)) = \mu(3 - \alpha) < \mu(0.5). \]

• So, the maximum is indeed attained only when we have \(\alpha = 2.5 \).

• Thus, fuzzy ideas indeed explain why we should select the exponent \(\alpha = 2.5 \).
9. What If We Apply Probabilistic Techniques?

- All we know about α is that $\alpha \in (2, 3)$.
- To describe this uncertainty, we can use a probability distribution $f(\alpha)$ on the interval $(2, 3)$.
- There are many different probability distributions on this interval.
- Which distribution should we choose?
- We do not have any reason to believe that some values from this interval are more probable than others.
- Thus, it makes sense to assume that all the values from the interval are equally probable.
- So, we have a uniform distribution on this interval.
- This argument is known as Laplace’s Indeterminacy Principle.
10. Probabilistic Approach (cont-d)

- Which value from the interval $(2, 3)$ should we choose?
- A reasonable idea is to decrease the expected loss caused by an erroneous choice of α.
- Let us denote the loss caused by selecting a value $\tilde{\alpha}$ when the actual value is α by $L(\tilde{\alpha}, \alpha)$.
- Then minimizing the expected loss means minimizing the expression $\int L(\tilde{\alpha}, \alpha) \cdot f(\alpha) \, d\alpha$.
- The loss happens every time the selected value $\tilde{\alpha}$ is different from the actual value α, i.e., when
 \[\Delta \alpha \overset{\text{def}}{=} \tilde{\alpha} - \alpha \neq 0. \]
- Thus, it makes sense to consider a loss function which depends on this difference:
 \[L(\tilde{\alpha}, \alpha) = \ell(\Delta \alpha) \text{ for some function } \ell(x). \]
11. Probabilistic Approach (cont-d)

- Which function $\ell(x)$ should we choose?
- It is reasonable to assume that $\Delta \alpha$ is small.
- So we can expand the dependence $\ell(x)$ in Taylor series and keep the first few terms in this expansion:

$$\ell(x) = \ell_0 + \ell_1 \cdot x + \ell_2 \cdot x^2 + \ldots$$

- When we selected α correctly, i.e., when $\Delta \alpha = 0$, we should not have any loss, so we should have $\ell(0) = 0$.
- Thus, we have $\ell_0 = 0$, and $\ell(x) = \ell_1 \cdot x + \ell_2 \cdot x^2$.
- The loss is the smallest when $\Delta \alpha = 0$.
- So, the function $\ell(x)$ attains its minimum for $x = 0$.
- Thus, the derivative of the function $\ell(x)$ should be equal to 0 when $x = 0$. This implies that $\ell_1 = 0$.
- Thus, the loss function is proportional to $(\Delta \alpha)^2$.
12. Probabilistic Approach (cont-d)

- So, the expected loss is $\ell_2 \cdot \int_2^3 (\tilde{\alpha} - \alpha)^2 \cdot f(\alpha) \, d\alpha$.
- Differentiating this expression with respect to $\tilde{\alpha}$ and equating the derivative to 0, we get

 $$2\ell_2 \cdot \left(\tilde{\alpha} - \int_2^3 \alpha \cdot f(\alpha) \, d\alpha \right) = 0; \text{ thus } \tilde{\alpha} = \int_2^3 \alpha \cdot f(\alpha) \, d\alpha.$$

- For the uniform distribution $f(\alpha) = 1$, this implies

 $$\tilde{\alpha} = \int_2^3 \alpha \, d\alpha = \left. \frac{\alpha^2}{2} \right|_2^3 = \frac{3^2}{2} - \frac{2^2}{2} = \frac{9 - 4}{2} = 2.5.$$

- So, in the probabilistic approach, we also arrive at the conclusion that the best value is $\alpha = 2.5$.

- Two different techniques for describing uncertainty lead to the same explanation.

- This makes us confident that our explanation is correct.
13. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.
14. On Laplace Indeterminacy Principle

- Its modern form is the Maximum Entropy approach:
 - out of all possible probability distributions,
 - we select a one for which the entropy
 \[S \overset{\text{def}}{=} - \int f(\alpha) \cdot \ln(f(\alpha)) \, d\alpha \]
 is the largest possible.

- So, we maximize \(- \int_2^3 f(\alpha) \cdot \ln(f(\alpha)) \, d\alpha\) under the constraint \(\int_2^3 f(\alpha) \, d\alpha = 1\).

- Lagrange multiplier method leads an unconstrained problem: maximize
 \[- \int_2^3 f(\alpha) \cdot \ln(f(\alpha)) \, d\alpha + \lambda \cdot \left(\int_2^3 f(\alpha) \, d\alpha - 1 \right). \]

- Differentiating with respect to \(f(\alpha)\) and equating the derivative to 0, we get \(- \ln(f(\alpha)) - 1 + \lambda = 0\).

- So, \(f(\alpha) = \exp(\lambda - 1) = \text{const}\): a uniform distribution.