Uncertain Information Fusion and Knowledge Integration: How to Take Reliability into Account

Hung T. Nguyen1, Kittawit Autchariyapanitkul2, Olga Kosheleva3 and and Vladik Kreinovich3

1Dept. of Mathematical Sciences, New Mexico State University
Las Cruces, NM 88003, USA, and Faculty of Economics
Chiang Mai University, Thailand, hunguyen@nmsu.edu
2Faculty of Economics
Maejo University, Chiang Mai, Thailand, kittar3@hotmail.com
3University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA, olgak@utep.edu, vladik@utep.edu
1. Information Fusion and Knowledge Integration: a Brief Reminder

• Suppose that we are interested in an object or a system.
• We are therefore interested in the values of quantities x_1, \ldots, x_n that characterize this object or system.
• *Example*: for a periodic process $s(t) = A \cdot \sin(\omega \cdot t + \theta)$, we have $x_1 = A$, $x_2 = \omega$, and $x_3 = \theta$.
• In many practical situations, we have several different pieces of knowledge about this object.
• We need to get estimates for the quantities x_i that reflect all the pieces of knowledge.
• This is what we usually mean by information fusion and knowledge integration.
2. What Are the Pieces of Information that We Try to Fuse?

• In general, most information about the objects and systems comes from measurements.

• We often also have expert information.

• Sometimes, we can directly measure or estimate the desired values \(x_i \), but such situations are rare.

• For example, for a periodic signal, we usually measure its value \(s(t) \) at different moments of time \(t \).

• Let \(y_j \) denote the result of the \(j \)-th estimate, \(j \leq N \).

• Let \(a_j = (a_{j1}, \ldots, a_{js}) \) be parameters describing the \(j \)-th setting.

• For example, for the sinusoidal wave, \(a_{j1} = t_j \) and

\[
y_j = x_1 \cdot \sin(x_2 \cdot a_{j1} + x_3).
\]
3. Data Fusion (cont-d)

- Often, y_j depends also on some auxiliary quantities $c = (c_1, \ldots, c_m)$ (of no direct interest to us):

$$y_j = f(x_1, \ldots, x_n, a_{j1}, \ldots, a_{js}, c_1, \ldots, c_m).$$

- For example, our observations of the periodic process maybe affected by the higher harmonics

$$s(t) = A \cdot \sin(\omega \cdot t + \theta) + A_2 \cdot \sin(2\omega \cdot t + \theta_2)$$

- In general, we know:
 - the results $\tilde{y}_j \approx y_j$ of measuring or estimating y_j,
 - the settings a_j and the function $y_j = f(x, a_j, c)$.

- Based on this information, we want to estimate the desired quantities x_1, \ldots, x_n.
4. Need to Take into Account Uncertainty and Reliability

- Measurements and estimates are never absolutely accurate: \(\tilde{y}_j \).
- This uncertainty need to be taken into account when estimating \(x_i \).
- Also, sometimes, measurements correspond to another object, not to the object of interest.
- For example, underwater sonar sensors sometimes record reflections by another object.
- Our goal is to come up with a general methods for taking both uncertainty and reliability into account.
5. Two Types of Uncertainty $\Delta y_j \overset{\text{def}}{=} \tilde{y}_j - y_j$

- In some cases, we know the frequency of different values of estimation inaccuracy.
- In precise terms, we know the probability distribution of this inaccuracy.
- In other cases, all we know is the expert estimations for the size of this inaccuracy.
- These estimations are usually expressed by using imprecise ("fuzzy") words from natural language.
- In such cases, a reasonable idea is to use fuzzy logic.
- Fuzzy logic techniques were specifically designed for handling this uncertainty.
6. Probabilistic Uncertainty: Examples

- In some cases, we know the pdf $\rho_j(\Delta y_j)$ for the estimation error $\Delta y_j = \tilde{y}_j - y_j$.

- If a measuring instrument returns the result 0.376, this means any value from 0.3755 to 0.3765.

- In general, \tilde{y}_j means an interval $[\tilde{y}_j - \delta_j, \tilde{y}_j + \delta_j]$, for some small δ_j.

- We can estimate the probability P_j of this estimate as $P_j = \rho_j(\Delta y_j) \cdot (2\delta_j)$.

- Usually, all $\rho_j(\Delta y_j)$ belong to the same family $\rho_j(\Delta y_j) = \rho(\Delta y_j, \theta_{j1}, \ldots, \theta_{jq})$ for known θ_{jk}.

- Example: $\rho(\Delta y, \theta_{j1}) = \frac{1}{\sqrt{2\pi} \cdot \theta_{j1}} \cdot \exp \left(-\frac{(\Delta y)^2}{2\theta_{j1}^2} \right)$.

- Sometimes, some parameters β_i, \ldots of the pdf are unknown: e.g., we may not know σ’s.
7. Probabilistic Uncertainty: General Description

- The set \{1, \ldots, N\} of all estimations is divided into several disjoint subsets \(S_\alpha\).
- For \(j \in S_\alpha\), the pdf of \(\Delta y_j\) is
 \[\rho_\alpha(\Delta y_j, \theta j_1, \ldots, \theta j_q, \beta_\alpha_1, \ldots, \beta_\alpha t) \].
- Here, \(\theta_\alpha_1, \ldots\) are known, while \(\beta_\alpha_1, \ldots\) are not known.
- E.g.: different \(S_\alpha\) corr. to different measuring instruments, with 0 mean and unknown st. dev. \(\beta_\alpha_1 = \sigma_\alpha\):
 \[\rho_\alpha(\Delta y) = \frac{1}{\sqrt{2\pi} \cdot \beta_\alpha_1} \cdot \exp \left(-\frac{(\Delta y)^2}{2\beta_\alpha_1^2} \right) . \]
8. Case of Fuzzy Uncertainty

- In the fuzzy case, we have membership functions instead of pdfs.
- The set \{1, \ldots, N\} of all estimations is divided into several disjoint subsets \(S_\alpha\).
- For \(j \in S_\alpha\), we have
 \[
 \mu_\alpha(\Delta y_j, \theta_{j_1}, \ldots, \theta_{j_q}, \beta_{\alpha_1}, \ldots, \beta_{\alpha_t}) .
 \]
- Here, \(\theta_{\alpha_1}, \ldots\) are known, while \(\beta_{\alpha_1}, \ldots\) are not known.
- E.g.: different \(S_\alpha\) corr. to different experts.
9. How Probabilistic Uncertainty Is Taken into Account in Information Fusion

- For each estimate j, the probability P_j of having the estimate \tilde{y}_j is proportional to the pdf.

- Approximation errors corresponding to different measurements are usually independent.

- So, the overall probability of having N estimates $\tilde{y}_1, \ldots, \tilde{y}_N$ is proportional to

$$L = \prod_{\alpha} \prod_{j \in S_{\alpha}} \rho_{\alpha}(\Delta y_j, \theta_{j1}, \ldots, \theta_{jq_{\alpha}}, \beta_{\alpha1}, \ldots, \beta_{\alpha t_{\alpha}}),$$

where

$$\Delta y_j = \tilde{y}_j - f(x_1, \ldots, x_n, a_{j1}, \ldots, a_{js}, c_1, \ldots, c_m).$$

- A reasonable idea is to find x’s, β’s, and c’s for which the probability L is the largest.

- This idea is known as the Maximum Likelihood Method.
10. Gaussian (Normal) Case

- There are usually many different reasons for an estimation error.
- For example, for measurements, there is noise in each part of the measuring instrument.
- All these noises contribute to the overall estimation error.
- For large N, the distribution of the sum of N small independent random variables is close to Gaussian.
- This Central Limit Theorem explains the ubiquity of Gaussian distributions.
- For measurements, bias can be detected and eliminated by re-scaling.
- It is thus reasonable to assume that the mean of Δy_j is 0.
11. Gaussian (Normal) Case (cont-d)

- In this case, minimizing $-\ln(L)$ results in the Least Squares method:

$$\sum_{j=1}^{N} \frac{(\Delta y_j)^2}{\sigma_j^2} = \sum_{j=1}^{N} \frac{(\tilde{y}_j - f(x, a_j, c))^2}{\sigma_j^2} \rightarrow \min_{x,c}.$$

- If we do not know σ_α for $j \in S_\alpha$, Maximum Likelihood leads to $\sigma_\alpha^2 = \frac{1}{N_\alpha} \sum_{j \in S_\alpha} (\tilde{y}_j - y_j)^2$, hence:

$$\sum_{\alpha} \ln \left(\sum_{j \in N_\alpha} (\tilde{y}_j - f(x, a_j, c))^2 \right) \rightarrow \min_{x,c}.$$
12. How Fuzzy Uncertainty Is Taken into Account

- We are interested in the degree D to which:
 - Δy_1 is a possible value of the 1st approx. error, and
 - Δy_2 is a poss. value of the 2nd approx. error, etc.
- So, $D = f_&(D_1, D_2, \ldots, D_\alpha, \ldots)$, where
 $$D_\alpha = f_&(d_j : j \in S_\alpha).$$
- We select β’s and c’s for which D is the largest.
- When $f_&(a, b) = a \cdot b$, we get the same problem as for probabilistic uncertainty.
- Every “and”-operation can be approximated, with any given accuracy, by an Archimedean one:
 $$f_&(a, b) = g^{-1}(g(a) \cdot g(b)).$$
- In particular, $\min(a, b)$ can be thus approximated.
13. How Fuzzy Uncertainty Is Taken into Account

- Every “and”-operation can be approximated, with any given accuracy, by an Archimedean one:
 \[f_\&(a, b) = g^{-1}(g(a) \cdot g(b)). \]

- Thus, we can safely assume that \(f_\&(a, b) \) is Archimedean.

- Then, maximizing \(D \) is equivalent to maximizing
 \[g(D) = \prod_{\alpha} \prod_{j \in S_{\alpha}} g(\mu_{\alpha}(\Delta y_j, \theta_{j1}, \ldots, \theta_{jq_{\alpha}}, \beta_{\alpha1}, \ldots, \beta_{\alpha t_{\alpha}})). \]

- Thus, we get the same expression as in probabilistic case, but with \(g(\mu_{\alpha}(\ldots)) \) instead of \(\rho_{\alpha}(\ldots) \).

- So, we can use the same algorithms as in the probabilistic case.
14. What Do We Know About Reliability?

- Sometimes the estimates \tilde{y}_j correspond not to the object of interest, but to some other object.
- Usually, such situations are rare.
- From past experience, we can estimate how rare they can be.
- Thus, we can assume that for every j, we know:
 - either the probability p_j that the j-th estimate is related to the desired quantities,
 - or the degree of confidence q_j to which the j-th estimate is related to the desired quantity.
15. How to Take Reliability into Account: Probabilistic Case

- For every j, we have an additional unknown:
 - $z_j = 1$ if j-th estimate is related to the desired quantity,
 - $z_j = 0$ otherwise.
- When $z_j = 1$, the probability of observing \tilde{y}_j is
 $$E_j = p_j \cdot \rho_\alpha(\tilde{y}_j - f(x, a_j, c), \theta_j, \beta_\alpha).$$
- When $z_j = 0$, then $E_j = (1 - p_j) \cdot \rho_\alpha(\tilde{y}_j - y_j, \theta_j, \beta_\alpha)$.
- The values y_j corr. to $z_j = 0$ are also unknown, so we find them from Maximum Likelihood:
 $$E_j = (1 - p_j) \cdot \max_y \rho_\alpha(y, \theta_j, \beta_\alpha).$$
16. How to Take Reliability into Account (cont-d)

- We select the largest of the two values, so
 \[E_j = \max \left((1 - p_j) \cdot \max_y \rho_\alpha(y, \theta_j, \beta_\alpha), \right. \]
 \[\left. p_j \cdot \rho_\alpha(\tilde{y}_j - f(x, a_j, c), \theta_j, \beta_\alpha) \right). \]

- We then find the values \(x, c, \) and \(\beta \) for which the product \(E_1 \cdot \ldots \cdot E_N \) is the largest.

- We already know how to solve the optimization problem corresponding to \(z_j \equiv 1. \)

- How can we transform this algorithm into an algorithm for solving the new problem?

- A natural idea is to use component-wise maximization:
 - first, we maximize over one group of variables,
 - then, over another group, etc.,
 - until the process converges.
17. Algorithm: General Case

- First, we pick \(z_j = 1 \) for all \(j \) and use Maximum Likelihood techniques to optimize over \(x, c, \) and \(\beta \).
- Once we find the corresponding values of \(x, c, \) and \(\beta \), we optimize over \(z_j \).
- Namely, we select \(z_j = 1 \) if and only if
 \[
 p_j \cdot \rho_\alpha(\tilde{y}_j - f(x, a_j, c), \theta_j, \beta_\alpha) \geq (1 - p_j) \cdot \max_y \rho_\alpha(y, \theta_j, \beta_\alpha).
 \]
- Then, using only \(j \)'s with \(z_j = 1 \), we use Maximum Likelihood to find new estimates for \(x, c, \) and \(\beta \).
- This process continues until it converges.
18. Case of Normal Distributions

- The E_j-condition is: $1 - p_j \leq p_j \cdot \exp\left(-\frac{(\Delta y_j)^2}{2\sigma_j^2}\right)$, i.e.,

$$|\Delta y_j| \leq \sigma_j \cdot \sqrt{2 \ln \left(\frac{p_j}{1 - p_j}\right)}.$$ So:

- Find x and c for which $\sum_{j=1}^{N} \frac{(\tilde{y}_j - f(x, a_j, c))^2}{\sigma_j^2} \to \max$.

- Then, we select $z_j = 1$ if and only if

$$|\tilde{y}_j - f(x, a_j, c)| \leq \sigma_j \cdot \sqrt{2 \ln \left(\frac{p_j}{1 - p_j}\right)}.$$

- Find x and c s.t. $\sum_{j: z_j = 1} \frac{(\tilde{y}_j - f(x, a_j, c))^2}{\sigma_j^2} \to \max$.

- This process continues until it converges.
19. Taking Reliability into Account: Fuzzy Case

• When \(z_j = 1 \), the degree to which \(\tilde{y}_j \) is possible is
 \[
 D_j = f_\& (q_j, \mu_\alpha(\tilde{y}_j - f(x, a_j, c), \theta_j, \beta_\alpha)).
 \]
• When \(z_j = 0 \), then \(D_j = f_\& (1 - q_j, \mu_\alpha(\tilde{y}_j - y_j, \theta_j, \beta_\alpha)) \).
• For \(E_j = g(D_j) \), we thus get
 \[
 E_j = g(q_j) \cdot g(\mu_\alpha(\tilde{y}_j - f(x, a_j, c), \theta_j, \beta_\alpha)) \quad \text{if} \quad z_j = 1;
 \]
 \[
 E_j = g(1 - p_j) \cdot \max_y g(\mu_\alpha(y, \theta_j, \beta_\alpha)) \quad \text{if} \quad z_j = 0.
 \]
• We select the largest of the two values, so
 \[
 E_j = \max \left(q(1 - q_j) \cdot \max_y g(\mu_\alpha(y, \theta_j, \beta_\alpha)),

 g(q_j) \cdot g(\mu_\alpha(\tilde{y}_j - f(x, a_j, c), \theta_j, \beta_\alpha)) \right).
 \]
• We find the values \(x, c, \) and \(\beta \) that maximize \(g(D) = E_1 \cdot \ldots \cdot E_N \).
• We can thus use a similar algorithm.
20. Algorithm: Fuzzy Case

- First, we pick $z_j = 1$ for all j and use Maximum Likelihood techniques to optimize over x, c, and β.
- Once we find the corresponding values of x, c, and β, we optimize over z_j.
- Namely, we select $z_j = 1$ if and only if
 \[
g(q_j) \cdot g(\mu_\alpha(\tilde{y}_j - f(x, a_j, c, \theta_j, \beta_\alpha)) \geq \]
 \[
g(1 - q_j) \cdot \max_y g(\mu_\alpha(y, \theta_j, \beta_\alpha)). \]
- Then, using only j’s with $z_j = 1$, we use Maximum Likelihood to find new estimates for x, c, and β.
- This process continues until it converges.
21. Conclusion

- In many application areas, we have several different pieces of information about an object of interest.
- In such situations, it is necessary to combine these pieces of information.
- In this combination, we need to take into account:
 - that the information is rarely absolutely accurate – i.e., that we have uncertainty – and
 - that sometimes, the information is about other objects – and is, thus, not 100% reliable.
- There exist many techniques for taking uncertainty into account.
- In this paper, we show how these techniques can be modified so as to take reliability into account as well.
22. Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.