Taylor-Type Techniques for Handling Uncertainty in Expert Systems, with Potential Applications to Geoinformatics

Martine Ceberio, Vladik Kreinovich, Sanjeev Chopra
NASA Pan-American Center for Earth and Environmental Studies (PACES)
University of Texas at El Paso
mceberio@cs.utep.edu, vladik@utep.edu

Bertram Ludaescher
Department of Computer Science, University of California, Davis
1. Formulation of the Problem

- **Expert knowledge** consists of statements S_j: facts and rules.

- **Objective:** given a query Q, check whether Q follows from the expert knowledge.

- **Example of a knowledge base:**

 $$S_1 : a \leftarrow b.$$

 $$S_2 : b \leftarrow .$$

 $$S_3 : a \leftarrow c.$$

 $$S_4 : c \leftarrow .$$

- In this example, S_1 and S_3 are rules, S_2 and S_4 are facts.

- **Example of a query Q:** a?.

- **Answer:** yes, e.g., Q follows from S_1 and S_2.

- **Tools:** Prolog-type inference engines.
2. Enter Uncertainty

- **Fact:** experts are not 100% confident.

- **How:** the expert’s degree of confidence in each statement S_j can be described as a (subjective) probability $p(S_j)$.

- **Example:** if we are interested in oil, we should look for certain geological structures (confidence 80%).

- **Question:** if a query Q is deducible from facts and rules, what is our confidence $p(Q)$ in Q?

- **Example:**
 - to find oil, look for subterranean structures (80%);
 - to find these structures, analyze gravity data (90%);
 - what is our confidence that to find oil, we must look for gravity data?
3. Representation

- **Idea**: we can usually describe Q as a propositional formula F in terms of S_j.
- **Example**:

 $S_1: a \leftarrow b$.
 $S_2: b \leftarrow \cdot$.
 $S_3: a \leftarrow c$.
 $S_4: c \leftarrow \cdot$.

 Here, $F = (S_1 & S_2) \lor (S_3 & S_4)$.
- **Resulting problem**:

 - we have a propositional combination F of known statements S_j;
 - we know the probabilities $p(S_j)$ of different statements;
 - we must determine the probability $p(F)$;
 - to be more precise, we need the interval $p(F)$ of possible values of $p(F)$.

4. Traditional Approach

- **Fact:** the problem of finding the exact bounds for $p(F)$ is NP-hard.

- **Traditionally:** expert systems use technique similar to straightforward interval computations:

 - we parse F and

 - replace each computation step with corresponding probability operation.

- **Operations:** if we know the bounds $[a, \bar{a}]$ for $p(A)$ and $[b, \bar{b}]$ for $p(B)$, then:

 - $p(A \& B)$ is in the interval

 $$[\max(a + b - 1, 0), \min(\bar{a}, \bar{b})];$$

 - $p(A \lor B)$ is in the interval

 $$[\max(a, b), \min(\bar{a} + \bar{b}, 1)].$$
5. Traditional Approach: Too Wide

- Example: $F = (A \& B) \lor (A \& \neg B)$, $p(A) = p(B) = 0.6$.

- Parsing:
 - we first find the bounds for $p(\neg B)$,
 - then for $p(A \& B)$ and $p(A \& \neg B)$, and
 - finally, the bounds for $p(F)$.

- Result: $p(\neg B) = 1 - 0.6 = 0.4$;
- $p(A \& B) = [\max(0.6 + 0.6 - 1, 0), \min(0.6, 0.6)] = [0.2, 0.6]$;
- $p(A \& \neg B) = [\max(0.6 + 0.4 - 1, 0), \min(0.6, 0.4)] = [0, 0.4]$;
- $p(F) = [\max(0, 0.2), \min(0.4 + 0.6, 1)] = [0.2, 1.0]$.

- Problem: F is equivalent to A, so $p(F) = 0.6$.
6. Main Idea

- **Similar problem**: excess width in straightforward interval computations.
- **Solution to the similar problem**: Taylor methods narrow down the resulting intervals.
- **Idea behind this solution**: if we use linear Taylor models, then, for each intermediate result y_j:
 - we not only keep the interval of its possible values,
 - we also keep the relation between this value and the original inputs –
 - in the form of a linear dependence
 \[
 y_j = a_{0j} + a_{1j} \cdot x_1 + \ldots + a_{nj} \cdot x_n.
 \]
- For quadratic Taylor models, we also keep the relation between y_j and pairs of inputs (as terms $a_{jkl} \cdot x_k \cdot x_l$),
- etc.
7. **Taylor Model-Type Techniques**

- **Main idea:** similarly to Taylor arithmetic, for each intermediate result F_j:
 - besides an interval of possible values for $p(F_j)$,
 - we also compute intervals of possible values for pairs $p(F_j \& F_i)$
 - (or even all Boolean functions of pairs);
 - on each step, use all such probabilities to get new estimates.

- **If this is not enough:** we use an analog of k-th order Taylor methods – estimate intervals for
 $$p(F_{j_1} \& \ldots \& F_{j_{k+1}}).$$

- The higher the order k:
 - the more accurate the results, but
 - the longer the computations.
8. Technical Details

- **Minor problem:** even if we know the probability of triples, then, in general, the problem is NP-hard.

- **Proof:** reduction to satisfiability of 3-CNF formulas.

- **Solution:** when estimating interval for $p(F_i \& \ldots)$, we take into account only $\leq l$ known probabilities.

- **How:**
 - we describe both known and estimated probabilities as sums of probabilities of atomic statements $S_{i_1}^{\varepsilon_1} \& \ldots \& S_{i_m}^{\varepsilon_m}$, where $m \leq k \cdot l$, and
 - use linear programming (LP) to get desired bounds on the unknown probability.

 + When $k \to \infty$ and $l \to \infty$, we get exact results.

 - However, computation time grows exponentially with k and l.

9. Example of Using LP

- We know: \(p(A) = a = 0.6 \) and \(p(B) = b = 0.6 \).
- We want to estimate: \(p(A \lor B) \).
- Atomic statements: \(p_{++} = p(A \land B) \), \(p_{+-} = p(A \land \neg B) \), \(p_{-+} = p(\neg A \land B) \), \(p_{--} = p(\neg A \land \neg B) \).
- LP: \(p_{++} + p_{+-} + p_{-+} \rightarrow \min(\max) \) under the conditions:
 \[
 p_{++} + p_{+-} = a; \quad p_{++} + p_{-+} = b; \\
 p_{++} + p_{+-} + p_{-+} + p_{--} = 1; \\
 p_{++} \geq 0; \quad p_{+-} \geq 0; \quad p_{-+} \geq 0; \quad p_{--} \geq 0.
 \]
- General solution: on one of the vertices, i.e., when the largest possible # of inequalities is equalities.
- Specifics: \(p(A \lor B) \) is the smallest when \(p_{-+} = 0 \); \(p(A \lor B) \) is the largest when \(p_{--} = 0 \).
10. Example: Intervals Are Narrower

- **Problem**: estimate \(p(A \lor \neg A) \) for \(p(A) = 0.6 \).

- **Desired answer**: \(p(A \lor \neg A) = 1 \).

- **Parsing**:
 - \(F_1 = A \),
 - \(F_2 = \neg A \),
 - \(F = F_1 \lor F_2 \).

- **Traditional approach**:
 - \(p(F_1) = 0.6 \);
 - \(p(F_2) = 1 - p(F_1) = 1 - 0.6 = 0.4 \);
 - \(p(F_1 \lor F_2) = [\max(0.4, 0.6), \min(0.4 + 0.6, 1)] = [0.4, 1] \).
11. New Approach

• Details:

 • $p(F_1) = 0.6$;

 • in addition to $p(F_2) = 1 - p(F_1) = 1 - 0.6 = 0.4$, we also use the relation $F_2 = \neg F_1$ to estimate probabilities of other binary combinations:

 \[
 p(F_1 \& F_2) = 0; \quad p(F_1 \& \neg F_2) = 0.6;
 \]
 \[
 p(\neg F_1 \& F_2) = 0.4; \quad p(F_1 \lor F_2) = 1;
 \]
 \[
 p(F_1 \lor \neg F_2) = 0.6; \quad p(\neg F_1 \lor F_2) = 0.4;
 \]
 \[
 p(\neg F_1 \lor \neg F_2) = 1;
 \]

 • based on these estimates, we get $p(F_1 \lor F_2) = 1.0$.

• Result: we get the exact desired probability, with no excess width.
12. Other Examples

- **Example 1:**
 - for \((A \land B) \lor (A \land \neg B)\), the traditional method leads to excess width in comparison with \(A\);
 - if we use triples (analogue of quadratic Taylor approximations), then we can estimate the probability of \((A \land B) \lor (A \land \neg B)\) as \(p(A)\).

- **Example 2:**
 - for \((A \land B) \lor (A \land C)\), the traditional method leads to excess width in comparison with \(A \lor (B \land C)\);
 - if we use higher-order methods, we get the exact interval for
 \[p((A \land B) \lor (A \land C))\]
 i.e., we get **distributivity**.
13. General Comment about Expert Systems and Fuzzy Logic

• A general argument against expert systems and fuzzy logic is that:

 • \(p(A \lor \neg A) \) is estimated as \(f(p(A), p(\neg A)) \) – e.g., as \(\max(p(A), p(\neg A)) \), while

 • the correct value of \(p(A \lor \neg A) \) is 1.

• Solution:

 • in addition to probabilities of individual intermediate statements,

 • keep probabilities of pairs, triples, etc.
14. Traditional Trust & Its Limitations

- **Traditional approach**: we either trust an agent or not.

- **Corollary**: if we trust an agent, we allow this agent full access to a particular task.

- **Example**: I trust my bank to handle my account.

- **Sub-agents**: the agent allows trusted sub-agents the same access, etc.

- **Example**: bank outsources money operations to another company.

- **Problem**: trust is not complete: I may have 99.9% trust in bank, bank in contractor, etc.

- **Result**: for long chains, the probability of a security leak increases beyond 0.1%.

- **Problem**: keep track of trust probabilities.
15. **Probabilistic Approach: Main Idea**

- We have a finite set A; its elements are called *agents*.
- For some pairs (a, b) of agents, we know the probability $p_0(a, b)$ with which a directly trusts b.
- **Objective:** to describe, for given two agents f and s, the probability $p_t(f, s)$ with which the agent s trusts the agent s.
- **In graph terms:** we have edge (a, b) w/prob. $p_0(a, b)$.
- We must find the probability $p_t(f, s)$ that there is a path from f to s.
- **Problem:** we have no information on the dependence between different direct trust links.
16. Possibly Dependent Case: Formulation of the Problem

- *It is usually assumed:* all the trusts are statistically independent.
- *In reality:* trusts may come from the assurances of the same third party.
- *Corollary:* trust may be correlated.
- *Problem:* depending on the degree of correlation, we may get different values of the resulting trust $p_t(f, s)$.
- *In critical systems:* it is reasonable to guarantee the trust only if all possible values of $p_t(f, s)$ are $\geq \tilde{p}$.
- *Equivalent formulation:* the smallest possible value $p_t(f, s)$ of $p_t(f, s)$ exceeds the threshold: $p_t(f, s) \geq \tilde{p}$.
- *Resulting problem:* we must be able to compute this “worst-case” trust probability $p_t(f, s)$.
17. Precise Formulation of the Problem

- **Given:** graph (A, E).
- **Given:** values $p_0(a, b)$ for all $(a, b) \in E$.
- **We consider:** all possible probability distributions $p(E')$ on the set of all subgraphs $E' \subseteq E$ for which, for every $(a, b) \in E$, we have
 \[
 \sum_{E' \colon (a, b) \in E'} p(E') = p_0(a, b).
 \]
- For every two edges f and s,
 \[
 p_t(f, s) \stackrel{\text{def}}{=} \sum_{E' \colon f \rightarrow s} p(E').
 \]
- We define $p_t(f, s)$ as the exact lower bound of all such values $p_t(f, s)$:
 \[
 p_t(f, s) \stackrel{\text{def}}{=} \inf\{p_t(f, s) \mid p \text{ is consistent with the given information}\}.
 \]
- **Objective:** compute $p_t(f, s)$.
18. This Problem Is Difficult to Solve

- *In the independent case:* we knew the exact distribution $p(E')$.

- *Corollary:* we could use the Monte-Carlo simulation techniques and estimate the $p_t(f, s)$.

- *In the possibly dependent case:* there several different probability distributions $p(E')$ consistent with the given information.

- *Seemingly reasonable idea:*
 - use the Monte-Carlo simulation for each of these distributions, and
 - find the smallest of the resulting values $p_f(f, s)$.

- *Problem:* there are infinitely many such distributions.

- *Result:* we cannot find the smallest possible value $p_t(f, s)$ by simply simulating all such distributions.
19. Possibly Dependent Case: Algorithm

- **Auxiliary definitions:**
 - The length (distrust) of an edge is defined as
 \[d_0(a, b) \overset{\text{def}}{=} 1 - p_0(a, b). \]
 - The length \(\ell(\gamma) \) of a path \(\gamma = (a_0, \ldots, a_n) \) is defined as usual:
 \[\ell(\gamma) \overset{\text{def}}{=} \sum_{i=0}^{n-1} d_0(a_i, a_{i+1}). \]
 - The length of the shortest path from \(f \) to \(s \) is defined as:
 \[d_t(f, s) \overset{\text{def}}{=} \min\{\ell(\gamma) \mid \text{\(\gamma \) is a path from} \ f \text{\ to} \ s\}. \]

- **Formula:** the desired value \(p_t(f, s) \) is equal to:
 \[p_t(f, s) = \max(1 - d_t(f, s), 0). \]

- **Algorithm:** use Dijkstra’s algorithm to find the shortest path, then compute \(p_t(f, s) \).
20. Acknowledgments

This work was supported in part:

- by NASA under cooperative agreement NCC5-209;
- by NSF grants EAR-0112968, EAR-0225670, and EIA-0321328;
- by Army Research Laboratories grant DATM-05-02-C-0046;
- by NIH grant 3T34GM008048-20S1;
- by Applied Biomathematics.
21. **Algorithm: Justification**

- Let \(p(E') \) be consistent with the given information.
- We want to prove: \(d_t(f, s) \leq \underline{d}_t(f, s) \), where
 \[
 d_t(f, s) \overset{\text{def}}{=} 1 - p_t(f, s).
 \]
- Let \(\gamma_0 = (a_0, a_1, \ldots, a_n) \) be the shortest path from \(a_0 = f \) to \(a_n = s \); then,
 \[
 \underline{d}_t(f, s) = d_0(a_0, a_1) + \ldots + d_0(a_{n-1}, a_n).
 \]
- If there is no path from \(f \) to \(s \) (\(N_t(f, s) \)), then at least one of the connections \((a_i, a_{i+1})\) is not present in \(E' \) (\(N_0(a_i, a_{i+1}) \)):
 \[
 N_t(f, s) \supset (N_0(a_0, a_1) \lor \ldots \lor N_0(a_{n-1}, a_n)).
 \]
- Hence,
 \[
 d_t(f, s) \leq P(N_0(a_0, a_1) \lor \ldots \lor N_0(a_{n-1}, a_n)).
 \]
- So, \(d_t(f, s) \leq d_0(a_0, a_1) + \ldots + d_0(a_{n-1}, a_n) = \underline{d}_t(f, s). \)
22. Proof (cont-d)

- To complete the proof, we produce a distribution $p(E')$ for which
 \[p_t(f, s) \leq \max(1 - d_t(f, s), 0). \]

- Let $\pi(x) \overset{\text{def}}{=} x - \lfloor x \rfloor$.

- We define $E(\omega)$ for $\omega = U([0, 1])$ as follows:

- For every $(a, b) \in E$, this edge is in $E(\omega)$ iff $\omega \not\in \pi(I(a, b))$, where
 \[I(a, b) \overset{\text{def}}{=} [d_t(f, a), d_t(f, a) + d_0(a, b)]. \]

- Since $\pi(I(a, b))$ has width $p_0(a, b)$, the distribution $p(E')$ is consistent with $p_0(a, b)$.

- Induction proves that for every path starting at $a_0 = f$, if all its edges $(a_i, a_{i+1}) \in E(\omega)$, then $\omega \geq d_t(a_0, a_n)$.

- Hence, $p_t(f, s) \leq \max(1 - p_t(f, s), 0)$.