Computing Degrees of Subsethood and Similarity for Interval-Valued Fuzzy Sets: Fast Algorithms

Hung T. Nguyen¹ and Vladik Kreinovich²

¹Department of Mathematical Sciences
New Mexico State University
Las Cruces, NM 88003
hunguyen@nmsu.edu

²Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA
vladik@utep.edu
1. Subsethood and Set Equality – Important Notions of Set Theory

- In traditional set theory, among the basic notions are the notions of set equality and subsethood:
 - two sets A and B are equal if they contain exactly the same elements, and
 - a set A is a subset of the set B if every element of the set A also belongs to B.

- It is desirable to generalize these notions to fuzzy sets.

- In traditional set theory, for every two sets A and B, either $A \subseteq B$ or $A \not\subseteq B$; either $A = B$ or $A \neq B$.

- The main idea behind fuzzy logic is that for fuzzy, imprecise concepts, everything is a matter of degree.

- Thus, it is reasonable to define degrees of subsethood $d_{\subseteq}(A, B)$ and similarity $d_=(A, B)$.
2. How to Describe Degree of Subsethood

- In fuzzy logic and fuzzy set theory, there is no built-in degree of subsethood or degree of equality.

- In fuzzy, we only have union $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$ and intersection $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$.

- So, let us express subsethood in terms of \cup and \cap.

- Such an expression is well known in set theory:
 1. in general, $A \cap B \subseteq A$, and
 2. $A \subseteq B \iff A \cap B = A$.

- So, we can take the ratio $d_{\subseteq}(A, B) = \frac{|A \cap B|}{|A|}$, where $|A|$ is the cardinality of A.

- For a fuzzy set, $|A| = \sum_x \mu_A(x) = \sum_{i=1}^n a_i$, so
 \[d_{\subseteq}(A, B) = \frac{\sum \min(a_i, b_i)}{\sum a_i}. \]
3. Degree of Equality (Similarity)

- It is known that
 - in general, $A \cap B \subseteq A \cup B$, and
 - $A = B \iff A \cap B = A \cup B$.

- So, it is reasonable to define the degree of similarity as
 \[
 d_e(A, B) = \frac{|A \cap B|}{|A \cup B|}.
 \]

- The smaller the ratio, the more there are elements from one of the sets which do not belong to the other.

- A similar definition can be used to define degree of equality (similarity) of two fuzzy sets A and B:
 \[
 d_e(A, B) = \frac{\sum_{i=1}^{n} \min(a_i, b_i)}{\sum_{i=1}^{n} \max(a_i, b_i)}.
 \]
4. Towards the Probabilistic Justification of the Above Formulas: Fuzzy Sets as Random Sets

- Idea: we can gauge $\mu_A(x)$ as the proportion of experts who believe that x satisfies the property A.

- So, $\mu_A(x)$ is the probability that, according to a randomly selected expert, x satisfies A.

- Every expert has a set of values that, according to this expert’s belief, satisfy the property A.

- We consider the experts to be equally valuable, so these sets are equally probable.

- Thus, we have, in effect, a probability distribution on the class of all possible sets – a random set.

- Thus, $\mu_A(x)$ can be interpreted as the probability that a given element x belongs to the random set.
5. Probabilistic Interpretation of the Formula for the Degree of Subsethood

- $A \subseteq B$ if and only if $P(B \mid A) = 1$.

- Thus, we define $d_\subseteq(A, B) \overset{\text{def}}{=} P(B \mid A) = \frac{P(A \cap B)}{P(A)}$.

- We know the probability $\mu_A(x) = P_A(x \in S)$ that a given element x belongs to the random set.

- Thus, $P(A) = \sum_x p(x) \cdot P_A(x \in S) = \sum_x p(x) \cdot \mu_A(x)$.

- We assume: all x are equally probable: $p(x) = c$.

- Similarly, $P(A \cap B) = c \cdot \sum_x \mu_{A \cap B}(x)$, so

$$P(B \mid A) = \frac{c \cdot \sum_x \mu_{A \cap B}(x)}{c \cdot \sum_x \mu_A(x)} = \frac{\sum_x \mu_{A \cap B}(x)}{\sum_x \mu_A(x)} = \frac{\sum_{i=1}^n \min(a_i, b_i)}{\sum_{i=1}^n a_i}.$$
6. Probabilistic Justification of the Formula for the Degree of Similarity

• $A = B$ if and only if that every element of the union $A \cup B$ also belongs to the intersection $A \cap B$.

• So, the sets A and B are equal if

$$P(A \cap B \mid A \cup B) = \frac{P(A \cap B)}{P(A \cup B)} = 1.$$

• Thus, we can define $d_\equiv(A, B) \overset{\text{def}}{=} P(A \cap B \mid A \cup B)$.

• For fuzzy sets, we get $P(A \cap B) = c \cdot \sum x \mu_{A \cap B}(x)$ and

$$P(A \cup B) = c \cdot \sum x \mu_{A \cup B}(x).$$

• Thus, the desired ratio takes the form

$$P(A \cap B \mid A \cup B) = \frac{c \cdot \sum x \mu_{A \cap B}(x)}{c \cdot \sum x \mu_{A \cup B}(x)} = \frac{\sum_{i=1}^{n} \min(a_i, b_i)}{\sum_{i=1}^{n} \max(a_i, b_i)}.$$
7. Alternative Ways of Describing Degrees of Subsethood and Similarity: Comment

- The above expressions are the simplest and probably most frequently used.
- However, there exist other expressions.
- For example, we can use the following idea:
 (1) in general, $B \subseteq A \cup B$, and (2) $B = A \cup B \iff A \subseteq B$.
- Thus, as an alternative degree of subsethood, we can take a ratio

$$\frac{|B|}{|A \cup B|} = \frac{\sum_{i=1}^{n} b_i}{\sum_{i=1}^{n} \max(a_i, b_i)}.$$

- In this talk, we only consider the main definitions.
8. Need for Interval-Valued (and More General Type-2) Fuzzy Sets

- An expert often cannot describe his or her knowledge by an exact value or by a precise set of possible values.
- Instead, the expert describe this knowledge by using words from natural language.
- In fuzzy logic, the expert’s degree of certainty that “x is A” is a number from $\mu_A(x) \in [0, 1]$.
- However, an expert is unable to meaningfully express his or her degree of certainty by a precise number.
- It is much more reasonable to assume that the expert will describe these degrees also by words.
- Thus, for every x, the degree $\mu_A(x)$ is not a number, but rather a new fuzzy set.
9. **Type-2 Fuzzy Sets: Successes and Challenges**

- **Fact**: type-2 fuzzy sets provide a more adequate representation of expert knowledge.

- **Corollary**: they lead to higher quality control, clustering, etc.

- **Main challenge**: transition to type-2 fuzzy sets leads to an increase in computation time:
 - in type-1, each degree $\mu_A(x)$ is a number;
 - in type-2, to describe a fuzzy set $\mu_A(x)$, we need more than one number.

- **Simplest case**: each degree is an interval $[\underline{\mu}_A(x), \overline{\mu}_A(x)]$.

- **Complexity**: we only need 2 numbers to describe each degree.

- **Corollary**: interval-valued fuzzy sets are mostly widely among type-2 sets.
10. How to Extend d_{\subseteq} to Interval-Valued Fuzzy Sets: Formulation of the Problem

- For each i from 1 to n, we know the intervals $[a_i, \overline{a}_i]$ and $[b_i, \overline{b}_i]$ of possible membership degrees.

- For each combination of values $a_i \in [a_i, \overline{a}_i]$ and $b_i \in [b_i, \overline{b}_i]$, we can compute the subsethood degree

$$d_{\subseteq} = \frac{\sum_{i=1}^{n} \min(a_i, b_i)}{\sum_{i=1}^{n} a_i}.$$

- The objective is to find the range $[d_{\subseteq}, \overline{d}_{\subseteq}]$ of possible values of the above subsethood degree, i.e.,

 - to compute the smallest possible value d_{\subseteq} of d_{\subseteq} when $a_i \in [a_i, \overline{a}_i]$ and $b_i \in [b_i, \overline{b}_i]$; and

 - to compute the largest possible value \overline{d}_{\subseteq} of d_{\subseteq} when $a_i \in [a_i, \overline{a}_i]$ and $b_i \in [b_i, \overline{b}_i]$.
11. How to Extend d_- to Interval-Valued Fuzzy Sets: Precise Formulation of the Problem

- For each i from 1 to n, we know the intervals $[a_i, \bar{a}_i]$ and $[b_i, \bar{b}_i]$ of possible membership degrees.
- For each combination of values $a_i \in [a_i, \bar{a}_i]$ and $b_i \in [b_i, \bar{b}_i]$, we can compute the similarity degree
 \[
 d_- = \frac{\sum_{i=1}^{n} \min(a_i, b_i)}{\sum_{i=1}^{n} \max(a_i, b_i)}.
 \]
- The objective is to find the range $[d_-, \bar{d}_-]$ of possible values of the above similarity degree, i.e.,
 - to compute the smallest possible value d_- of d_- when $a_i \in [a_i, \bar{a}_i]$ and $b_i \in [b_i, \bar{b}_i]$; and
 - to compute the largest possible value \bar{d}_- of d_- when $a_i \in [a_i, \bar{a}_i]$ and $b_i \in [b_i, \bar{b}_i]$.

12. What We Do in This Talk

- *In the paper:* we design four fast algorithms:
 - a fast algorithm for computing d_{\subseteq};
 - a fast algorithm for computing \overline{d}_{\subseteq};
 - a fast algorithm for computing $d_{=}$;
 - a fast algorithm for computing $\overline{d}_{=}$.

- *How fast:* each of these algorithms requires $O(n \cdot \log(n))$ computation steps.

- *In the talk:* we describe, in detail, one of these algorithms: for computing d_{\subseteq}.
13. Computing d_{\subseteq}: Analysis of the Problem

- **Fact:** $d_{\subseteq} = \frac{\sum \min(a_j, b_j)}{\sum a_j}$ is increasing in b_i.

- **Conclusion:** minimum is attained when $b_i = b_i$.

- **Two possible cases:**

 1. $a_i \leq b_i$ hence $\min(a_i, b_i) = a_i$;
 2. $b_i \leq a_i$ hence $\min(a_i, b_i) = b_i$.

- **Case 1:** $d_{\subseteq} = \frac{a_i + m_i}{a_i + M_i}$, where $m_i \overset{\text{def}}{=} \sum_{j \neq i} \min(a_j, b_j)$ and $M_i \overset{\text{def}}{=} \sum_{j \neq i} a_j$.

- Since $\min(a_j, b_j) \leq a_j$ for all j, we have $m_i \leq M_i$.

- Thus, $d_{\subseteq} = 1 - \frac{M_i - m_i}{a_i + M_i}$ increases when a_i increases.

- Hence, the minimum is when a_i is the smallest: $a_i = a_i$.

14. Computing d_{\subseteq} (cont-d)

- Case 2 ($b_i \leq a_i$): $d_{\subseteq} = \frac{m}{M} = \frac{\sum \min(a_j, b_j)}{\sum a_j} = \frac{m}{a_i + M_i}$.

- Conclusion: $d_{\subseteq} = \min$ when $a_i = \max = \overline{a}_i$.

- Case 1: $a_i = \underline{a}_i$ and $\underline{a}_i \leq b_i$,

- Case 2: $a_i = \overline{a}_i$ and $b_i \leq \overline{a}_i$.

- If $\overline{a}_i < b_i$, Case 2 is impossible, so $a_i = \underline{a}_i$.

- If $b_i < a_i$, Case 1 is impossible, so $a_i = \overline{a}_i$.

- In the remaining cases, when $\underline{a}_i \leq b_i \leq \overline{a}_i$, both $a_i = \underline{a}_i$ and $a_i = \overline{a}_i$ are possible.

- The value $a_i = \underline{a}_i$ minimizes if replacing it with \overline{a}_i increases the ratio: $\frac{m}{M} \leq \frac{m + (b_i - a_i)}{M + (\overline{a}_i - a_i)}$.

- So, $a_i = \underline{a}_i \iff \frac{m}{M} \leq \frac{m + (b_i - a_i)}{M + (\overline{a}_i - a_i)} \iff \frac{m}{M} \leq \frac{b_i - a_i}{\overline{a}_i - a_i}$.
15. Towards an Algorithm for Computing d_{\subseteq}

- If we know the optimal value d_{\subseteq} of the ratio m/M, then, as we have shown:

 - for each i,
 - we can determine whether the minimum is attained for $a_i = a_i$ or for $a_i = \bar{a}_i$.

- It is sufficient to know where m/M is w.r.t n ratios $r_i \equiv \frac{b_i - a_i}{\bar{a}_i - a_i}$, i.e., $r_{(j)} \leq \frac{m}{M} \leq r_{(j+1)}$ for $r_{(1)} \leq r_{(2)} \leq \ldots$

- For each possible location $r_{(j)} \leq m/M \leq r_{(j+1)}$:

 - we compute the corresponding values a_i, and then
 - we compute the resulting ratio $r^{(j)}$.

- Out of the resulting $n + 1$ ratios, we find the smallest.

- This smallest ratio is returned as d_{\subseteq}.
16. Algorithm for Computing d_{\subseteq}

- First, we divide n indices into three groups:
 \[I^- = \{ i : a_i < b_i \}, \quad I^+ = \{ i : b_i < a_i \}, \]
 \[I = \{ 1, \ldots, n \} - I^- - I^+. \]

- For all $i \in I$, we compute the ratios $r_i \overset{\text{def}}{=} \frac{b_i - a_i}{a_i - a_i}$ and sort them: $r_1 \leq r_2 \leq \ldots \leq r_k$.

- We then compute
 \[
 \begin{align*}
 m^{(0)} &= \sum_{i \in I} a_i + \sum_{i \in I^-} a_i + \sum_{i \in I^+} b_i; \\
 M^{(0)} &= \sum_{i \in I} a_i + \sum_{i \in I^-} a_i + \sum_{i \in I^+} b_i; \\
 m^{(j+1)} &= m^{(j)} + (b_{j+1} - a_{j+1}); \\
 M^{(j+1)} &= m^{(j)} + (\bar{a}_{j+1} - a_{j+1}).
 \end{align*}
 \]

- For all j from 0 to $k + 1$, we compute $r^{(j)} = \frac{m^{(j)}}{M^{(j)}}$.

- The smallest of $r^{(j)}$ is the desired smallest value d_{\subseteq}.

- Sorting takes $O(n \cdot \log(n))$ steps, rest is linear time $O(n)$, so overall we need $O(n \cdot \log(n))$ steps.
17. Conclusion

- To adequately capture commonsense reasoning, we must capture its imprecise character.
- One of the most successful ways to describe such reasoning is the technique of fuzzy sets.
- In fuzzy sets, for each element a, there is a degree $\mu_A(a) \in [0, 1]$ to which a belongs to the set A.
- These degrees, in turn, can only be determined with uncertainty.
- So, in practice, we only know intervals $[\underline{\mu}_A(a), \overline{\mu}_A(a)]$ of possible values of these degrees.
- In other words, we practice, we only have an interval-valued fuzzy set.
- Among the most important concepts of set theory are the notions of subsethood and equality.
18. Conclusions (cont-d)

- **Reminder:** among the most important concepts of set theory are the notions of subsethood and equality.
- Thus,
 - to extend set theoretic techniques to fuzzy sets and interval-valued fuzzy sets,
 - we must be able to efficiently compute degrees of subsethood and degrees of equality (similarity):
 * for fuzzy sets and
 * for interval-valued fuzzy sets.
- There exist efficient algorithms for computing these degrees for fuzzy sets.
- We have shown how to extend these algorithms to a (more realistic) case of interval-valued fuzzy sets.
19. Acknowledgments

This work was supported in part:

- by NSF grant HRD-0734825,
- by Grant 1 T36 GM078000-01 from the National Institutes of Health,
- by the Japan Advanced Institute of Science and Technology (JAIST) International Joint Research Grant 2006-08, and
- by the Max Planck Institut für Mathematik.

The authors are thankful

- to Bernadette Bouchon-Meunier and Jerry M. Mendel for valuable discussions, and
- to the anonymous referees for important suggestions.