Why Max and Average Poolings are Optimal in Convolutional Neural Networks

Ahnaf Farhan, Olga Kosheleva, and Vladik Kreinovich

University of Texas at El Paso, El Paso, Texas 79968, USA
afarhan@miners.utep.edu, olgak@utep.edu, vladik@utep.edu
1. Need for Data Processing

- The main objectives of science and engineering are:
 - to describe the world,
 - to predict the future behavior of the world’s systems, and
 - to find the best way to improve this behavior.

- The current state of the world is described by numerical values of different physical quantities.

- Some of these values can be directly measured; e.g., we can measure:
 - the distance to a nearby city,
 - the temperature, humidity, and wind speed at different Earth locations.

- Other quantities are difficult (or even impossible) to measure directly.
2. Need for Data Processing (cont-d)

- Examples:
 - the distance to a nearby star,
 - the temperature on the surface of the Sun, etc.

- Since we cannot measure these quantities \(y \) directly, we have to determine them indirectly: namely,
 - we measure the values of easier-to-measure quantities \(x_1, \ldots, x_n \) which are related to \(y \), and then
 - use the measurement results \(\tilde{x}_1, \ldots, \tilde{x}_n \) to compute an estimate \(\tilde{y} \) for the desired quantity \(y \).

- The corresponding computations form an important case of **data processing**.

- Similar computations are needed to estimate:
 - the future values of the quantities of interest and
 - the values of necessary control.
3. Need for Machine Learning

- In some cases, we know the exact relation $y = f(x_1, \ldots, x_n)$.
- E.g., we can predict the future locations of planets.
- In other cases, we need to determine the corresponding relation from the available data.
- Namely, in several situations $k = 1, \ldots, K$:
 - we measure the values $x_1^{(k)}, \ldots, x_n^{(k)}, y^{(k)}$, and
 - then use this data to find a dependence $f(x_1, \ldots, x_n)$ for which $y^{(k)} \approx f(x_1^{(k)}, \ldots, x_n^{(k)})$ for all k.
- Algorithms for reconstructing the dependence from empirical data are known as machine learning.
- At present, the most efficient machine learning algorithms are the algorithms of deep neural networks.
4. Need to Take Uncertainty into Account

- In the ideal situation, when all the values are known exactly, it is often easy to find the dependence; e.g.:
 - if it turns out that all the values corresponding to the dependence $y = f(x_1)$ fit a straight line,
 - we conclude that the dependence is linear.

- In reality, measurements are never absolutely accurate.

- There is always measurement uncertainty; as a result:
 - even if the actual dependence is linear,
 - we corresponding pairs $\left(\tilde{x}_1^{(k)}, \tilde{y}^{(k)} \right)$ do not lie on the same straight line.
5. Need for Convolutional Neural Networks

• In many practical situations, the available data comes:
 – in terms of \textit{time series} – when we have values measured at equally spaced time moments – or
 – in terms of an \textit{image} – when we have data corresponding to a grid of spatial locations.

• Neural networks for processing such data are known as \textit{convolutional neural networks}.
6. Need for Pooling

- We want to decrease the distortions caused by measurement errors.

- For that, we take into account that usually, the actual values at nearby points in time or space are close to each other.

- As a result,
 - instead of using the measurement-distorted value at each point,
 - we can take into account that values at nearby points are close, and
 - combine ("pool together") these values into a single more accurate estimate.
7. Which Pooling Techniques Work Better: Empirical Results

- In principle, we can have many different pooling algorithms.

- It turns out that empirically, in general, the most efficient pooling algorithm is max-pooling:

 \[a = \max(a_1, \ldots, a_m). \]

- The next efficient is average pooling, when we take the arithmetic average

 \[a = \frac{a_1 + \ldots + a_m}{m}. \]

- In this paper, we provide a theoretical explanation for this empirical observation.

- Namely, we prove that max and average poolings are indeed optimal.
8. What Is Pooling: Towards a Precise Definition

- We start with \(m \) values \(a_1, \ldots, a_m \), and we want to generate a single value \(a \) that represents all these values.
- In the case of arithmetic average, we select \(a \) for which \(a_1 + \ldots + a_m = a + \ldots + a \) (\(m \) times).
- In general, pooling means that:
 - we select some combination operation \(* \) and
 - we then select the value \(a \) for which \(a_1 * \ldots * a_m = a * \ldots * a \) (\(m \) times).
- For example:
 - if, as a combination operation, we select \(\max(a, b) \),
 - then the corresponding condition \(\max(a_1, \ldots, a_n) = \max(a, \ldots, a) = a \) describes the max-pooling.
- From this viewpoint, selecting pooling means selecting an appropriate combination operation.
9. Natural Properties of a Combination Operation

- The combination operation transforms:
 - two non-negative values – such as intensity of an image at a given location
 - into a single non-negative value.
- The result of applying this operation should not depend on the order in which we combine the values.
- Thus, we should have $a \ast b = b \ast a$ (commutativity) and $a \ast (b \ast c) = (a \ast b) \ast c$ (associativity).
10. What Does It Mean to Have an Optimal Pooling?

- Optimality means that on the set of all possible combination operations, we have a preference relation \(\preceq \).
- \(A \preceq B \) means that the operation \(B \) is better than (or of the same quality as) the operation \(A \).
- This relation should be transitive:
 - if \(C \) is better than \(B \) and \(B \) is better than \(A \),
 - then \(C \) should be better than \(A \).
- An operation \(A \) is optimal if it is better than (or of the same quality as) any other operation \(B \): \(B \preceq A \).
- For some preference relations, we may have several different optimal combination operations.
- We can then use this non-uniqueness to optimize something else.
11. What Is Optimal Pooling (cont-d)

- Example:
 - if there are several different combination operations with the best average-case accuracy,
 - we can select, among them, the one for which the average computation time is the smallest possible.
- If after this, we still get several optimal operations,
 - we can use the remaining non-uniqueness
 - to optimize yet another criterion.
- We do this until we get a final criterion, for which there is only one optimal combination operation.
12. Scale-Invariance

- Numerical values of a physical quantity depend on the choice of a measuring unit.

- For example, if we replace meters with centimeters, the numerical quantity is multiplied by 100.

- In general:
 - if we replace the original unit with a unit which is λ times smaller,
 - then all numerical values get multiplied by λ.

- It is reasonable to require that the preference relation should not change if we change the measuring unit.

- Let us describe this requirement in precise terms.
13. Scale-Invariance (cont-d)

• If, in the original units, we had the operation $a \ast b,$ then, in the new units, the operation will be as follows:

 – first, we transform the value a and b into the new units, so we get $a' = \lambda \cdot a$ and $b' = \lambda \cdot b$;

 – then, we combine the new numerical values, getting $(\lambda \cdot a) \ast (\lambda \cdot b)$;

 – finally, we re-scale the result to the original units, getting $a_{R_{\lambda}(\ast)} b \overset{\text{def}}{=} \lambda^{-1} \cdot ((\lambda \cdot a) \ast (\lambda \cdot b))$.

• It therefore makes sense to require that if $\ast \preceq \ast'$, then for every $\lambda > 0$, we get $R_{\lambda}(\ast) \preceq R_{\lambda}(\ast')$.
14. **Shift-Invariance**

- The numerical values also change if we change the starting point for measurements.
- For example, when measuring intensity:
 - we can measure the actual intensity of an image,
 - or we can take into account that there is always some noise $a_0 > 0$, and
 - use the noise-only level a_0 as the new starting point.
- In this case, instead of each original value a, we get a new numerical value $a' = a - a_0$.
15. **Shift-Invariance (cont-d)**

- If we apply the combination operation in the new units, then in the old units, we get a slightly different result:
 - first, we transform the value a and b into the new units, so we get $a' = a - a_0$ and $b' = b - a_0$;
 - then, we combine the new numerical values, getting $(a - a_0) \ast (b - a_0)$;
 - finally, we re-scale the result to the original units, getting $aS_{a_0}(\ast)b \overset{\text{def}}{=} (a - a_0) \ast (b - a_0) + a_0$.

- It makes sense to require that the preference relation not change if we simply change the starting point.

- So if $\ast \preceq \ast'$, then for every a_0, we get $S_{a_0}(\ast) \preceq S_{a_0}(\ast')$.

16. Weak Version of Shift-Invariance

- Alternatively, we can have a weaker version of this “shift-invariance”.

- Namely, we require that shifts in a and b imply a possibly different shift in $a \ast b$, i.e.,
 - if we shift both a and b by a_0,
 - then the value $a \ast b$ is shifted by some value $f(a_0)$ which is, in general, different from a_0.

- Now, we are ready to formulation our results.
17. Definitions

• By a combination operation, we mean a commutative, associative operation \(a \ast b\) that:
 - transforms two non-negative real numbers \(a\) and \(b\)
 - into a non-negative real number \(a \ast b\).

• By an optimality criterion, we need a transitive reflexive relation \(\preceq\) on the set of all combination operations.

• We say that a combination operation \(\ast_{\text{opt}}\) is optimal w.r.t. \(\preceq\) if \(\ast \preceq \ast_{\text{opt}}\) for all combination operations \(\ast\).

• We say that \(\preceq\) is final if there exists exactly one \(\preceq\)-optimal combination operation.

• We say that an optimality criterion is scale-invariant if for all \(\lambda > 0\), \(\ast \preceq \ast'\) implies \(R_{\lambda}(\ast) \preceq R_{\lambda}(\ast')\), where:
 \[
 aR_{\lambda}(\ast)b \overset{\text{def}}{=} \lambda^{-1} \cdot ((\lambda \cdot a) \ast (\lambda \cdot b)).
 \]
18. Definitions and First Result

• We say that an optimality criterion is shift-invariant if for all a_0, $\leq \leq \prime$ implies $S_{a_0}(\ast) \leq S_{a_0}(\ast')$, where:

$$aS_{a_0}(\ast)b \overset{\text{def}}{=} ((a - a_0) \ast (b - a_0)) + a_0.$$

• We say that \leq is weakly shift-invariant if for every a_0, there exists $f(a_0)$ s.t. $\leq \leq \prime$ implies $W_{a_0}(\ast) \leq W_{a_0}(\ast')$, where $aW_{a_0}(\ast)b \overset{\text{def}}{=} ((a - a_0) \ast (b - a_0)) + f(a_0)$.

• Proposition 1. For every final, scale- and shift-invariant \leq, the optimal combination operation \ast is

$$a \ast b = \min(a, b) \text{ or } a \ast b = \max(a, b).$$

• This result explains why max-pooling is empirically the best combination operation.

• Note that this result does not contradict uniqueness as we requested.
19. Results (cont-d)

- Indeed, there are several different final scale- and shift-invariant optimality criteria.
- For each of these criteria, there is only one optimal combination operation.
- For some of these optimality optimality criteria, the optimal combination operation is min(\(a, b\)).
- For other criteria, the optimal combination operation is max(\(a, b\)).

- **Proposition 2.** For every final, scale-invariant and weakly shift-invariant \(\leq\), the optimal \(*\) is:

 \[
 a * b = 0, \quad a * b = \min(a, b), \quad a * b = \max(a, b), \quad \text{or} \quad a * b = a + b.
 \]

- This result explains why max-pooling and average-pooling are empirically the best combination operations.
20. Acknowledgments

- This work was supported in part by the US National Science Foundation grant HRD-1242122 (Cyber-ShARE).
21. General Part of the Two Proofs

• Let us first prove that the optimal operation \ast_{opt} is itself scale-invariant: $R_\lambda(\ast_{\text{opt}}) = \ast_{\text{opt}}$ for all $\lambda > 0$.

• The fact that \ast_{opt} is optimal means that $\ast \preceq \ast_{\text{opt}}$ for all \ast.

• In particular, $R_{\lambda^{-1}}(\ast) \preceq \ast_{\text{opt}}$ for all \ast.

• Due to scale-invariance of the optimality criterion, this implies that $\ast \preceq R_\lambda(\ast_{\text{opt}})$ for all \ast.

• Thus, the operation $R_\lambda(\ast_{\text{opt}})$ is also optimal.

• But since the optimality criterion is final, there is only one optimal operation, so $R_\lambda(\ast_{\text{opt}}) = \ast_{\text{opt}}$.

• Scale-invariance is proven.

• Shift-invariance is proven similarly.

• For Proposition 2, we can similarly prove that the optimal \ast is weakly shift-invariant: $W_{a_0}(\ast_{\text{opt}}) = \ast_{\text{opt}}$.
22. Proof of Proposition 1

- Let $a \ast b$ be the optimal combination operation.
- We have shown that this operation is scale-invariant and shift-invariant.
- Let us prove that it has one of the above two forms.
- For every pair (a, b), we can have three different cases: $a = b$, $a < b$, and $a > b$.
- Let us consider them one by one.
- Let us first consider the case when $a = b$.
- Let us denote $v \overset{\text{def}}{=} 1 \ast 1$.
- From scale-invariance with $\lambda = 2$, from $1 \ast 1 = v$, we get $2 \ast 2 = 2v$.
- From shift-invariance with $s = 1$, from $1 \ast 1 = v$, we get $2 \ast 2 = v + 1$.
23. Proof of Proposition 1 (cont-d)

• Thus, \(2v = v + 1\), hence \(v = 1\), and \(1 \ast 1 = 1\).

• For \(a > 0\), by applying scale-invariance with \(\lambda = a\) to the formula \(1 \ast 1 = 1\), we get \(a \ast a = a\).

• For \(a = 0\), if we denote \(c \overset{\text{def}}{=} 0 \ast 0\), then, by applying shift-invariance with \(s = 1\) to \(0 \ast 0 = c\), we get
 \[1 \ast 1 = c + 1\]

• Since we already know that \(1 \ast 1 = 1\), this means that \(c + 1 = 1\) and thus, that \(c = 0\), i.e., that \(0 \ast 0 = 0\).

• So, for all \(a \geq 0\), we have \(a \ast a = a\).

• In this case, \(\min(a, a) = \max(a, a) = a\), so we have \(a \ast a = \min(a, a)\) and \(a \ast a = \max(a, a)\).

• Let us now consider the case when \(a < b\). In this case, \(b - a > 0\).
24. **Proof of Proposition 1** (cont-d)

- Let us denote $t \overset{\text{def}}{=} 0 \ast 1$.
- By applying scale-invariance with $\lambda = b - a > 0$ to the formula $0 \ast 1 = t$, we get $0 \ast (b - a) = (b - a) \cdot t$.
- Now, by applying shift-invariance with $s = a$ to this formula, we get $a \ast b = (b - a) \cdot t + a$.
- To find possible values of t, let us take into account that the combination operation should be associative.
- This means, in particular, that for all possible triples $a, b, \text{ and } c$ for which we have $a < b < c$, we must have
 \[a \ast (b \ast c) = (a \ast b) \ast c. \]
- Since $b < c$, by the above formula, we have $b \ast c = (c - b) \ast t + b$.
- Since $t \geq 0$, we have $b \ast c \geq b$ and thus, $a < b \ast c$.
25. Proof of Proposition 1 (cont-d)

- So, to compute \(a \ast (b \ast c) \), we can also use the above formula, and get

\[
(a \ast b) \ast c = (c - a \ast b) \cdot t + a = (c - ((b - a) \cdot t + a)) \cdot t + (b - a) \cdot t + a.
\]

- Let us restrict ourselves to the case when \(a \ast b < c \).

- In this case, the general formula implies that

\[
(a \ast b) \ast c = (c - a \ast b) \cdot t + a \ast b = (c - ((b - a) \cdot t + a)) \cdot t + (b - a) \cdot t + a.
\]

- So \((a \ast b) \ast c = c \cdot t + b \cdot (t - t^2) + a \cdot (1 - t)^2 \).

- Due to associativity, the two formulas must coincide for all \(a, b, \) and \(c \) for which \(a < b < c \) and \(c > a \ast b \).

- These two linear expressions must be equal for all sufficiently large values of \(c \).

- Thus, the coefficients at \(c \) must be equal, i.e., we must have \(t = t^2 \).
26. Proof of Proposition 1 (cont-d)

- From \(t = t^2 \), we conclude that \(t - t^2 = t \cdot (1 - t) = 0 \), so either \(t = 0 \) or \(1 - t = 0 \) (in which case \(t = 1 \)).

- If \(t = 0 \), then the above formula has the form \(a \ast b = a \), i.e., since \(a < b \), the form \(a \ast b = \min(a, b) \).

- If \(t = 1 \), then the above formula has the form
 \[
 a \ast b = (b - a) + a = b.
 \]

- Since \(a < b \), we get \(a \ast b = \max(a, b) \).

- If \(a > b \), then, by commutativity, we have \(a \ast b = b \ast a \), where now \(b < a \).

- So, either we have \(a \ast b = \min(a, b) \) for all \(a \) and \(b \), or we have \(a \ast b = \max(a, b) \) for all \(a \) and \(b \).

- The proposition is proven.
27. Proof of Proposition 2

- Let \(a \ast b \) be the optimal combination operation.
- We have proven that this operation is scale-invariant and weakly shift-invariant.
- This means that \(a \ast b = c \) implies \((a + s) \ast (b + s) = c + f(s) \).
- Let us prove that the optimal operation \(\ast \) has one of the above four forms.
- Let us first prove that \(0 \ast 0 = 0 \).
- Indeed, let \(s \) denote \(0 \ast 0 \).
- Due to scale-invariance, \(0 \ast 0 = s \) implies that \((2 \cdot 0) \ast (2 \cdot 0) = 2s \), i.e., that \(0 \ast 0 = 2s \).
- So, we have \(s = 2s \), hence \(s = 0 \) and \(0 \ast 0 = 0 \).
- Similarly, if we denote \(v \overset{\text{def}}{=} 1 \ast 1 \), then, due to scale-invariance with \(\lambda = a \), \(1 \ast 1 = v \) implies that \(a \ast a = v \cdot a \).
28. Proof of Proposition 2 (cont-d)

- On the other hand, due to weak shift-invariance with $a_0 = a$, $0 \ast 0 = 0$ implies that $a \ast a = f(a)$.
- Thus, we conclude that $f(a) = v \cdot a$.
- Let us now consider the case when $a < b$ and, thus, $b - a > 0$.
- Let us denote $t \overset{\text{def}}{=} 0 \ast 1$.
- From scale-invariance with $\lambda = b - a$, from $0 \ast 1 = t \geq 0$, we get $0 \ast (b - a) = t \cdot (b - a)$.
- From weak shift-invariance with $a_0 = a$, we get $a \ast b = t \cdot (b - a) + v \cdot a$, i.e., $a \ast b = t \cdot b + (v - t) \cdot a$.
- The combination operation should be associative: $a \ast (b \ast c) = (a \ast b) \ast c$.
- When $b < c$, we have $b \ast c = t \cdot c + (v - t) \cdot b$.
29. Proof of Proposition 2 (cont-d)

- We know that \(t \geq 0 \). This means that we have either \(t > 0 \) and \(t = 0 \).
- Let us first consider the case when \(t > 0 \).
- In this case, for sufficiently large \(c \), we have \(b \ast c > a \).
- So, by applying the above formula to \(a \) and \(b \ast c \), we conclude that

\[
a \ast (b \ast c) = t \cdot (b \ast c) + (v - t) \cdot a = t^2 \cdot c + t \cdot (v - t) \cdot b + (v - t) \cdot a.
\]
- For sufficient large \(c \), we also have \(a \ast b < c \).
- In this case, the general formula implies that

\[
(a \ast b) \ast c = (t \cdot b + (v - t) \cdot a) \ast c = t \cdot c + t \cdot (v - t) \cdot b + (v - t)^2 \cdot a.
\]
- Due to associativity, these formulas must coincide for all \(a, b, \) and \(c \) for which

\[
a < b < c, \quad c > a \ast b, \quad \text{and} \quad b \ast c > a.
\]
30. Proof of Proposition 2 (cont-d)

- These two linear expressions must be equal for all sufficiently large values of c.

- So, the coefficients at c must be equal, i.e., we must have $t = t^2$.

- From $t = t^2$, we conclude that $t - t^2 = t \cdot (1 - t) = 0$.

- Since we assumed that $t > 0$, we must have $t - 1 = 0$, i.e., $t = 1$.

- The coefficients at a must also coincide, so we must have $v - t = (v - t)^2$, hence either $v - t = 0$ or $v - t = 1$.

- In the first case, the above formula becomes $a \ast b = b$, i.e., $a \ast b = \max(a, b)$ for all $a \leq b$.

- Since the operation \ast is commutative, this equality is also true for $b \leq a$ and is, thus, true for all a and b.
31. Proof of Proposition 2 (cont-d)

- In the second case, the above formula becomes \(a \ast b = a + b \) for all \(a \leq b \).
- Due to commutativity, this formula holds for all \(a, b \).
- Let us now consider the case when \(t = 0 \).
- In this case, the above formula takes the form \(a \ast b = (v - t) \cdot a \).
- Here, \(a \ast b \geq 0 \), thus \(v - t \geq 0 \).
- If \(v - t = 0 \), this implies that \(a \ast b = 0 \) for all \(a \leq b \) and thus, due to commutativity, for all \(a \) and \(b \).
- Let us now consider the remaining case when \(v - t > 0 \).
- In this case, if \(a < b < c \), then for sufficiently large \(c \), we have \(a \ast b < c \), hence

\[
(a \ast b) \ast c = (v - t) \cdot (a \ast b) = (v - t) \cdot ((v - t) \cdot a) = (v - t)^2 \cdot a.
\]
32. Proof of Proposition 2 (cont-d)

- On the other hand, here \(b \ast c = (v - t) \cdot b \).
- So, for sufficiently large \(b \), we have \((v - t) \cdot b > a \), thus
 \[a \ast (b \ast c) = (v - t) \cdot a. \]
- Due to associativity, we have \((v - t)^2 \cdot a = (v - t) \cdot a \), hence \((v - t)^2 = v - t \).
- Since \(v - t > 0 \), we have \(v - t = 1 \).
- In this case, the above formula takes the form \(a \ast b = a = \min(a, b) \) for all \(a \leq b \).
- Thus, due to commutativity, we have \(a \ast b = \min(a, b) \) for all \(a \) and \(b \).
- We have thus shown that the combination operation indeed has one of the four forms.
- Proposition 2 is therefore proven.