Let Us Use Negative Examples in Regression-Type Problems Too

Jonatan Contreras, Francisco Zapata, Olga Kosheleva, Vladik Kreinovich, and Martine Ceberio

University of Texas at El Paso, 500 W. University El Paso, TX 79968, USA
jmcontreras2@utep.edu, fcozpt@outlook.com, olgak@utep.edu vladik@utep.edu, mceberio@utep.edu
1. What We Want: A General Description

• From the practical viewpoint, the main objective of science is to predict what will happen in the world.

• The main objective of engineering is to find out what changes we need to make in the world to make it better.

• To select the appropriate changes, we need to be able to predict how each possible change will affect the world.

• Thus, in both cases, we need to be able:

 – given the initial conditions x (which include the information about the change),

 – to predict the value of each quantity y characterizing the future state.
2. Often, We Do Not Know the Dependence of y on x

- In some cases – e.g., in celestial mechanics – we know the equations (or even explicit formulas) that relate:
 - the available information x and
 - the desired quantity y.
- In such cases, in principle, we have an algorithm for predicting y.
- In some situations, this algorithm may not be practical; for example:
 - the fastest we can reasonably reliably predict where the tornado will go in the next 15 minutes is
 - after several hours of computations on a high-performance computer,
 - which makes these computations useless.
3. We Don’t Know the Dependence (cont-d)

- However, computers get faster and faster.
- So, we will eventually be able to make the corresponding computations practical.
- In many other situations, however, we do not know how y depends on x.
- We need to determine this dependence based on the known examples $(x^{(k)}, y^{(k)})$ of past situations.
- Of course, this knowledge comes from measurements, and measurements are never absolutely accurate.
- So, in reality, instead of knowing the exact value y, we usually know:
 - an interval containing y, and sometimes
 - a probability distribution on this interval describing the frequency of different y’s.
4. Classification vs. Regression

- In some cases, the desired variable y takes only finite many values – e.g., sick or healthy; poor or rich.
- Such problems are known as classification problems.
- In other cases, the variable y can take all possible values within a certain interval.
- Such problems are known as regression problems.
5. Positive and Negative Examples

- There cases when we know both x and y – which we will call positive examples.
- There are also some cases in which we know x, but we only have partial information about y.
- For example, we know that y does not belong to a certain interval.
- We will call such examples negative examples.
- Negative example are ubiquitous in binary classification, when we have only two possible values y_1, y_2.
- Indeed:
 - every positive example in which $y = y_2$
 - can be interpreted as a negative example in which we know that y is not equal to y_1.
6. Positive and Negative Examples (cont-d)

• However, in regression problems, negative examples are usually not used.

• In principle, they provide an additional information about the dependence.

• So it would be beneficial to use them.

• However, they are not used because it is not clear how to use them.

• In this talk, we show how to use negative examples.

• We also show cases when the use of negative examples help.

• In our analysis, we will cover all three major types of uncertainty: interval, fuzzy, and probabilistic.
7. Positive and Negative Examples (cont-d)

- We will assume, for simplicity, that:
 - the x values are known exactly,
 - i.e., to be more precise, that the inaccuracy in x can be safely ignored, but
 - the values of y are known with uncertainty.

- In all three cases, we assume that we know the family of dependencies $y = f(x, c_1, \ldots, c_n)$.

- For example, it can be the family of all linear functions or the family of all quadratic functions.

- We want to find:
 - the values $c = (c_1, \ldots, c_n)$ of the parameters
 - for which the corresponding dependence is the best fit with the available data.
8. Important Comment: Negative Examples in Education

- A significant part of knowledge is taught by presenting examples \((x^{(k)}, y^{(k)})\):
 - of a problem \(x\) and
 - of its correct solution \(y\).

- It is well known that learning can be enhanced if:
 - in addition to correct solutions,
 - students also see examples of typical mistakes,
 - i.e., pairs \((x^{(k)}, y^{(k)})\) in which we know that \(y^{(k)}\) is not a correct solution.
9. Regression under Interval Uncertainty: A Brief Reminder

- Following the general simplifying assumption, we consider the case when:
 - the values $x^{(k)}$ are known exactly, but
 - the values $y^{(k)}$ are known with interval uncertainty,
 - i.e., that for each k, we know the interval $[\underline{y}^{(k)}, \overline{y}^{(k)}]$ that contains the actual (unknown) value $y^{(k)}$.

- We select the values $c = (c_1, \ldots, c_n)$ for which the following condition is satisfied for all k:

$$\underline{y}^{(k)} \leq f \left(x^{(k)}, c_1, \ldots, c_n\right) \leq \overline{y}^{(k)}, 1 \leq k \leq K.$$
10. Regression under Interval Uncertainty: Algorithms

- For each i, we want to find the range $[c_i, \overline{c}_i]$ of possible values of c_i.

- This range can be obtained by solving the following two constraint optimization problems:

 - to find c_i, we minimize c_i under the above constraints; and

 - to find \overline{c}_i, we maximize c_i under the above constraints.

- In the general non-linear case, this problem is NP-hard.

- Even finding one single combination c that satisfies all the constraints is, in general, NP-hard.

- In such cases, constraint solving algorithms can lead to approximate ranges: e.g., to enclosures $[\underline{c}_i', \overline{c}_i'] \supseteq [c_i, \overline{c}_i]$.
11. Interval Regression (cont-d)

• Computing the ranges \([c_i, \bar{c}_i]\) becomes feasible if we consider families that linearly depend on \(c_i\):
\[
f(x, c_1, \ldots, c_n) = f_0(x) + c_1 \cdot f_1(x) + \ldots + c_n \cdot f_n(x).
\]
• In this case, inequalities become linear inequalities in terms of the unknowns \(c_i\):
\[
y^{(k)} \leq f_0(x) + c_1 \cdot f_1(x^{(k)}) + \ldots + c_n \cdot f_n(x^{(k)}) \leq \bar{y}^{(k)}.
\]
• We can then solve the following two linear programming problems:
 - to find \(c_i\), we minimize \(c_i\) under the linear constraints; and
 - to find \(\bar{c}_i\), we maximize \(c_i\) under the linear constraints.
• There exist feasible algorithms for linear programming, so these problems are feasible.
12. What If We Have “Negative” Intervals?

- What if we also have “negative” intervals \((y^{(k)}, \bar{y}^{(k)})\), \(k = K + 1, \ldots, L\) – that do not contain \(y^{(k)}\).

- In this case, we also have an additional condition that must be satisfied for each \(\ell\) from \(K + 1\) to \(L\):
 \[
f\left(x^{(\ell)}, c_1, \ldots, c_n\right) \leq y^{(\ell)} \text{ or } \bar{y}^{(\ell)} \leq f\left(x^{(\ell)}, c_1, \ldots, c_n\right).
\]

- The question is to find the values \(c = (c_1, \ldots, c_n)\) that satisfy all the constraints.
13. Negative Intervals Can Help

- Suppose that for a linear model $y = c_1 \cdot x$, we have two observations:
 - for $x = -1$ and for $x = 1$,
 - we have $y \in [-1, 1]$.

- One can easily see that in this case, the set of possible values of c_1 is the interval $[-1, 1]$.

- In particular, for $x = 2$, the only information that we can extract from this data is that $y \in [-2, 2]$.

- Now, suppose that we know that for $x = 2$, the value y cannot be in the interval $(-3, 2)$.

- Then the set of possible values of y narrow down to a single value $y = 2$.

- The set $[-1, 1]$ of possible values of c_1 narrows down to a single value $c_1 = 1$.
14. With Negative Intervals, Already the Linear Problem Is NP-Hard

• Indeed, it is known that the following problem is NP-hard:
 – given natural numbers \(s_1, \ldots, s_n \) and \(s \),
 – find a subset of the values \(s_i \) that adds up to \(s \).

• In other words, we need to find the values \(c_i \in \{0, 1\} \) (describing whether to take the \(s_i \) or not) for which
 \[
 \sum_{i=1}^{n} c_i \cdot s_i = s.
 \]

• This problem can be easily reformulated as an interval problem with positive and negative examples.

• For this purpose, we take a linear model
 \[
 y = c_1 \cdot x_1 + \ldots + c_n \cdot x_n.
 \]
15. NP-Hard for Negative Intervals (cont-d)

- We take the following examples.
- A positive example: $x_i = s_i$ for all i and $y \in [s, s]$.
- Consistency with this example means $s = \sum_{i=1}^{n} c_i \cdot s_i$.
- n additional positive examples; in the i-th example:
 - we have $x_i = 1$, $x_j = 0$ for all $j \neq i$, and
 - we have $y \in [0, 1]$.
- Consistency with each such example means $c_i \in [0, 1]$.
- n negative examples; in the i-th example:
 - we have $x_i = 1$, $x_j = 0$ for all $j \neq i$, and
 - we have $y \notin (0, 1)$.
- Consistency with each such example means $c_i \notin (0, 1)$, so $c_i \in \{0, 1\}$.
16. So What Do We Do: First Idea

• NP-hard implies that:
 – unless P = NP (which most computer scientists believe to be impossible),
 – no feasible algorithm is possible that would always compute the exact ranges for c_i,
 – or even check whether the data is consistent with the model.

• So what do we do?

• Each negative interval $(y^{(\ell)}, \bar{y}^{(\ell)})$ means that the actual value of $y^{(\ell)}$ is:
 – either in the interval $(-\infty, y^{(\ell)})$,
 – or in the interval $[\bar{y}^{(\ell)}, \infty)$.
17. First Idea (cont-d)

• Thus, we can:
 – add, to K positive intervals, the first of these two semi-infinite intervals, and
 – solve the corresponding linear programming problem, and get ranges $[c_i^{(\ell),-}, c_i^{(\ell),-}]$ for c_i;
 – we can also add, to K positive intervals, the second of these two semi-infinite intervals, and
 – solve the corresponding linear programming problem, and get ranges $[c_i^{(\ell),+}, c_i^{(\ell),+}]$ for c_i.

• The actual value $y^{(\ell)}$ is either in the first or in the second of the semi-infinite intervals.

• So, the actual range of possible values of each c_i belongs to the union of the two intervals:
 \[[c_i^{(\ell)}, c_i^{(\ell)}] = [c_i^{(\ell),-}, c_i^{(\ell),-}] \cup [c_i^{(\ell),+}, c_i^{(\ell),+}] \]
18. First Idea (cont-d)

- So, we take:

\[c_i^{(\ell)} = \min \left(c_i^{(\ell)-}, c_i^{(\ell)+} \right) \quad \text{and} \quad \bar{c}_i^{(\ell)} = \max \left(\bar{c}_i^{(\ell)-}, \bar{c}_i^{(\ell)+} \right). \]

- The actual value \(c_i \) belongs to all these intervals.

- So we can conclude that it belongs to the intersection \([c_i, \bar{c}_i]\) of all these intervals:

\[[c_i, \bar{c}_i] = \bigcap_{\ell=K+1}^L \left[c_i^{(\ell)}, \bar{c}_i^{(\ell)} \right], \quad \text{i.e., we take} \]

\[c_i = \max_{\ell} c_i^{(\ell)} \quad \text{and} \quad \bar{c}_i = \min_{\ell} \bar{c}_i^{(\ell)}. \]

- If this intersection is empty, this means that the model is inconsistent with observations.
19. Second Idea

- In the above idea, every time, we only take into account one negative example.
- Instead, we can take into account two negative examples.
- Then, for each pair (ℓ, ℓ') of negative examples, we have four possible cases:
 - we can have the case $a = --$ when $y^\ell \in (-\infty, \underline{y}^{(\ell)}]$ and $y^{\ell'} \in (-\infty, \underline{y}^{(\ell')}]$;
 - we can have the case $a = -+$ when $y^\ell \in (-\infty, \underline{y}^{(\ell)}]$ and $y^{\ell'} \in [\overline{y}^{(\ell')}, \infty)$;
 - we can have the case $a = +-\ldots$ when $y^\ell \in [\overline{y}^{(\ell)}, \infty)$ and $y^{\ell'} \in (-\infty, \underline{y}^{(\ell')}]$; and
 - we can have the case $a = ++$ when $y^\ell \in [\overline{y}^{(\ell)}, \infty)$ and $y^{\ell'} \in [\overline{y}^{(\ell')}, \infty)$.
20. Second Idea (cont-d)

- For each of these four cases \(a = --, -+, +-, ++ \), we:
 - add the corresponding two semi-infinite intervals to \(K \) positive intervals, and
 - find the ranges \(\left[c_i^{(\ell, \ell')}, \bar{c}_i^{(\ell, \ell')} \right] \) for \(c_i \).

- Then, we can conclude that the actual value of \(c_i \) belongs to the union of these four intervals:
 \[
 \left[c_i^{(\ell, \ell')}, \bar{c}_i^{(\ell, \ell')} \right] = \bigcup_a \left[c_i^{(\ell, \ell'),a}, \bar{c}_i^{(\ell, \ell'),a} \right], \text{ i.e., we take}
 \]
 \[
 c_i^{(\ell, \ell')} = \min_a c_i^{(\ell, \ell'),a} \quad \text{and} \quad \bar{c}_i^{(\ell, \ell')} = \max_a \bar{c}_i^{(\ell, \ell'),a}.
 \]

- The actual value \(c_i \) belongs to all these intervals.

- So, we can conclude that it belongs to the intersection \([c_i, \bar{c}_i] \) of all these intervals:
 \[
 [c_i, \bar{c}_i] = \bigcap_{K+1 \leq \ell, \ell' \leq L} \left[c_i^{(\ell, \ell')}, \bar{c}_i^{(\ell, \ell')} \right].
 \]
21. Second Idea (cont-d)

- So, we take
 \[c_i = \max_{\ell, \ell'} c_i^{(\ell, \ell')} \quad \text{and} \quad \bar{c}_i = \min_{\ell, \ell'} \bar{c}_i^{(\ell, \ell')} . \]

- In this method, we get, in general, a better range – with smaller excess width.

- However, now, instead of considering \(O(L - K) \) cases, we need to consider \(O((L - K)^2) \) cases.

- We can get even more accurate estimates for the range if we consider:
 - all possible triples of negative intervals,
 - all possible 4-tuples of negative intervals, etc.

- However, then we will need to consider \(O((L - K)^3) \), \(O((L - K)^4) \), etc. cases.
22. What Is Fuzzy Uncertainty: A Brief Reminder

• In some cases, the values y are not measured but evaluated by an expert.

• An expert can say something like “the value of y is close to 1.5”.

• To formalize such imprecise (“fuzzy”) knowledge, Lotfi Zadeh invented special techniques – that he called fuzzy.

• In these techniques, for each imprecise expert statement about a quantity, we ask an expert:
 – to estimate, on a scale from 0 to 1,
 – his/her degree of confidence that the expert’s statement holds: e.g., that 1.7 is close to 1.5.

• The function that assigns this degree to each possible value is called a membership function.
23. Fuzzy Uncertainty (cont-d)

- Here:
 - once we know the degrees of confidence a, b, ... in individual statements A, B, ...
 - we can estimate degrees of confidence in composite statements such as $A \& B$, $A \lor B$, etc.

- The algorithms $f_\& (a, b)$ and $f_\lor (a, b)$ for such estimates are called:
 - “and”- and “or”-operations,
 - or, for historical reasons, t-norms and t-conorms.

- For example, the most widely used “and”-operations are $\min(a, b)$ and $a \cdot b$.
24. Regression Under Fuzzy Uncertainty: A Brief Reminder

- As usual, we know the $x^{(k)}$ exactly, and we know $y^{(k)}$ with fuzzy uncertainty.
- So, for each value y, we know our degree of confidence $\mu_k(y)$ that y is possible.
- In this case, the degree to which a model $y = f(x, c_1, \ldots, c_n)$ is consistent with the k-th observation is equal to
 \[\mu_k \left(f \left(x^{(k)}, c_1, \ldots, c_n \right) \right). \]
- The degree to which a model is consistent with all K observations is equal to
 \[f_\& \left(\mu_1 \left(f \left(x^{(1)}, c \right) \right), \ldots, \mu_K \left(f \left(x^{(K)}, c \right) \right) \right). \]
- A natural idea is to select the values $c = (c_1, \ldots, c_n)$ for which this degree is the largest possible.
25. What If We Have Negative Examples?

- Suppose now that:
 - in addition to K positive examples,
 - we also have $L - K$ negative examples, for which we know that the expert’s estimate is wrong.

- In fuzzy logic:
 - the degree to which a statement is wrong is usually estimated as
 - one minus the degree to which this statement is true.

- So, for a negative example, the degree to which this example is consistent with the model is equal to

$$1 - \mu_\ell \left(f \left(x^{(k)}, c_1, \ldots, c_n \right) \right).$$
26. What If We Have Negative Examples (cont-d)

• Thus, we should select a model for which the following degree takes the largest possible value:

\[f_\&(\mu_1 \left(f \left(x^{(1)}, c \right) \right), \ldots, \mu_K \left(f \left(x^{(K)}, c \right) \right), \]

\[1 - \mu_{K+1} \left(f \left(x^{(K+1)}, c \right) \right), \ldots, 1 - \mu_L \left(f \left(x^{(L)}, c \right) \right) \].
27. Regression under Probabilistic Uncertainty: A Brief Reminder

- Probabilistic uncertainty means that for each measurement k, we know the probabilities of different y’s.
- In other words, we know, e.g., the probability density function $\rho_k(y)$ describing these probabilities.
- So, the probability that a model $y = f(x, c_1, \ldots, c_n)$ is consistent with the k-th observation is proportional to:

$$\rho_k \left(f \left(x^{(k)}, c_1, \ldots, c_n \right) \right).$$
28. Probabilistic Uncertainty (cont-d)

- It is usually assumed that different measurements are independent.

- Thus, the probability that a model is consistent with all \(K \) observations is equal to the product:

\[
\prod_{k=1}^{K} \rho_k \left(f \left(x^{(k)}, c_1, \ldots, c_n \right) \right).
\]

- A natural idea is to select the values \(c_1, \ldots, c_n \) for which this probability is the largest possible.

- This is known as the Maximum Likelihood method.
29. What If We Have Negative Examples?

- From the purely probabilistic viewpoint, it is not clear how to handle such situations.
- However, we have a solution for the fuzzy case.
- So, we can use the fact – emphasized many times by Zadeh – that:
 - the main difference between a membership function $\mu(y)$ and a probability density function $\rho(y)$
 - is in normalization.
- A membership function has $\max_y \mu(y) = 1$.
- The probability density function is selected so that the overall probability is 1, i.e., that $\int \rho(y) \, dy = 1$.
30. What If We Have Negative Examples (cont-d)

- If we have a membership function, then:
 - by multiplying it by an appropriate constant,
 - we can get a probability density function.

- If we have a probability density function $\rho(y)$, then:
 - by dividing it by $m = \max_y \rho(y')$,
 - we will get a membership function.

- So, a natural idea is to convert the original probabilistic knowledge $\rho_k(y)$ into fuzzy one:
 \[\mu_k(y) = c_k^{-1} \cdot \rho_k(y), \text{ where } c_k \overset{\text{def}}{=} \max_{y'} \rho_k(y') \]

- In this case, the fuzzy approach to regression will lead us to maximize the above expression.

- We want the probability-to-fuzzy translation to be consistent with the Maximum Likelihood approach.
31. What If We Have Negative Examples (cont-d)

- Thus, we need to select \(f_{\&}(a, b) = a \cdot b \).
- In this case, the above expression takes the form

\[
\prod_{k=1}^{K} \mu_k \left(f \left(x^{(k)}, c_1, \ldots, c_n \right) \right) =
\left(\prod_{k=1}^{k} c_k^{-1} \right) \cdot \left(\prod_{k=1}^{K} \rho_k \left(f \left(x^{(k)}, c_1, \ldots, c_n \right) \right) \right).
\]

- This expression differs from likelihood only by a multiplicative constant.
- So, maximizing this expression is indeed equivalent to the Maximum Likelihood approach.
32. What If We Have Negative Examples (cont-d)

- Now it is easy to take into account negative examples: we just maximize the product

$$\prod_{k=1}^{K} \mu_k \left(f \left(x^{(k)}, c \right) \right) \cdot \prod_{\ell=K+1}^{L} \left(1 - \mu_\ell \left(f \left(x^{(\ell)}, c \right) \right) \right),$$

where \(\mu_k(y) \overset{\text{def}}{=} \frac{\rho_k(y)}{\max_{y'} \rho_k(y')} \).

- It is easy to see that maximizing this expression is equivalent to minimizing a simpler expression

$$\prod_{k=1}^{K} \rho_k \left(f \left(x^{(k)}, c \right) \right) \cdot \prod_{\ell=K+1}^{L} \left(1 - \mu_\ell \left(f \left(x^{(\ell)}, c \right) \right) \right).$$
33. **Future Work**

- In this talk, we provided a theoretical foundation for using negative examples in regression-like problems.
- We also showed, on simplified examples, that the resulting algorithms lead to more accurate models.
- Now we plan to apply the resulting algorithms and ideas to real-life problems.
- We hope that others will join us in this effort.
34. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).