Estimating
Statistical Characteristics
Under Interval Uncertainty
and Constraints:
Mean, Variance, Covariance,
and Correlation

Ali Jalal-Kamali
Department of Computer Science
The University of Texas at El Paso
El Paso, TX 79968, USA
December 2011
1. Need for Estimating Statistical Characteristics

- Often, we have a sample of values x_1, \ldots, x_n corresponding to objects of a certain type.

- A standard way to describe the population is to describe its mean, variance, and standard deviation:

$$
E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i; \quad V = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E)^2; \quad \sigma = \sqrt{V}.
$$

- When we measure two quantities x and y:
 - we describe the means E_x, E_y, variances V_x, V_y and standard deviations σ_x, σ_y of both;
 - we also estimate their covariance and correlation:

$$
C_{x,y} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E_x) \cdot (y_i - E_y); \quad \rho_{x,y} = \frac{C_{x,y}}{\sigma_x \cdot \sigma_y}.
$$
2. Case of Interval Uncertainty

- The above formulas assume that we know the exact values of the characteristics \(x_1, \ldots, x_n \).

- In practice, values usually come from measurements, and measurements are never absolutely exact.

- The measurement results \(\tilde{x}_i \) are, in general, different from the actual (unknown) values \(x_i \): \(\tilde{x}_i \neq x_i \).

- Often, it is assumed that we know the probability distribution of the measurement errors \(\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i \).

- However, often, the only information available is the upper bound on the measurement error: \(|\Delta x_i| \leq \Delta_i \).

- In this case, the only information that we have about the actual value \(x_i \) is that \(x_i \in x_i = [\underline{x}_i, \overline{x}_i] \), where

\[
\underline{x}_i = \tilde{x}_i - \Delta_i, \quad \overline{x}_i = \tilde{x}_i + \Delta_i.
\]
3. Need to Preserve Privacy in Statistical Databases

- In order to find relations between different quantities, we collect a large amount of data.

- Example: we collect medical data to try to find correlations between a disease and lifestyle factors.

- In some cases, we are looking for commonsense correlations, e.g., between smoking and lung diseases.

- For statistical databases to be most useful, we need to allow researchers to ask arbitrary questions.

- However, this may inadvertently disclose some private information about the individuals.

- Therefore, it is desirable to preserve privacy in statistical databases.
4. Intervals as a Way to Preserve Privacy in Statistical Databases

• One way to preserve privacy is to store ranges (intervals) rather than the exact data values.

• This makes sense from the viewpoint of a statistical database.

• In general, this is how data is often collected:
 – we set some threshold values t_0, \ldots, t_N and
 – ask a person whether the actual value x_i is in the interval $[t_0, t_1]$, or \ldots, or in the interval $[t_{N-1}, t_N]$.

• As a result, for each quantity x and for each person i:
 – instead of the exact value x_i,
 – we store an interval $x_i = [x_i^-, x_i^+]$ that contains x_i.

• Each of these intervals coincides with one of the given ranges $[t_0, t_1], [t_1, t_2], \ldots, [t_{N-1}, t_N]$.
5. Need to Estimate Statistical Characteristics $S(x_1, \ldots)$ Under Interval Uncertainty

• In both situations of measurement errors and privacy:
 – instead of the actual values x_i (and y_i),
 – we only know the intervals x_i (and y_i) that contain the actual values.

• Different values of x_i (and y_i) from these intervals lead, in general, to different values of each characteristic.

• It is desirable to find the range of possible values of these characteristics when $x_i \in x_i$ (and $y_i \in y_i$):

\[
S = \{ S(x_1, \ldots, x_n) : x_1 \in x_1, \ldots, x_n \in x_n \};
\]

\[
S = \{ S(x_1, \ldots, x_n, y_1, \ldots, y_n) : x_1 \in x_1, \ldots, x_n \in x_n, y_1 \in y_1, \ldots, y_n \in y_n \}.
\]

- The mean \(E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \) is an increasing function of all its inputs \(x_1, \ldots, x_n \).

- Hence, \(E \) is the smallest when all the inputs \(x_i \in [x_i, \bar{x}_i] \) are the smallest (\(x_i = x_i \)): \(E = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i; \bar{E} = \frac{1}{n} \cdot \sum_{i=1}^{n} \bar{x}_i \).

- However, variance, covariance, and correlation are, in general, non-monotonic.

- It is known that computing the ranges of these characteristics under interval uncertainty is NP-hard.

- The problem gets even more complex because in practice, we often have additional constraints.
7. Formulation of the Problem and What We Did

- **Reminder**: under interval uncertainty,
 - in the absence of constraints, computing the range \(E \) of the mean \(E \) is feasible;
 - computing the ranges \(V, C \), and \([\underline{\rho}, \overline{\rho}]\) is NP-hard.
- **Problem**: find practically useful cases when feasible algorithms are possible.
- **What is known**: for \(V \), we can feasibly compute:
 - one of the endpoints (\(V \)) – always; and
 - both endpoints – in the privacy case.
- **We designed**: feasible algorithms for computing:
 - the range \(E \) under constraints;
 - the range \(C \) in the privacy case; and
 - one of the endpoints \(\underline{\rho} \) or \(\overline{\rho} \).
8. Computing E under Variance Constraints

- In the previous expressions, we assumed only that x_i belongs to the intervals $x_i = [x_i, \bar{x}_i]$.

- In some cases, we have an additional \textit{a priori} constraint on x_i: $V \leq V_0$, for a given V_0.

- For example, we know that within a species, there can be ≤ 0.1 variation of a certain characteristic.

- Thus, we arrive at the following problem:

 - \textit{given:} n intervals $x_i = [x_i, \bar{x}_i]$ and a number $V_0 \geq 0$;
 - \textit{compute:} the range

 $$[E, \bar{E}] = \{ E(x_1, \ldots, x_n) : x_i \in x_i \& V(x_1, \ldots, x_n) \leq V_0 \};$$

 - \textit{under the assumption} that there exist values $x_i \in x_i$ for which $V(x_1, \ldots, x_n) \leq V_0$.

- This is a problem that we will solve in this thesis.
9. Cases Where This Problem Is (Relatively) Easy to Solve

- **First case:** \(V_0 \geq \) the largest possible value \(\overline{V}\) of the variance corresponding to the given sample.
- In this case, the constraint \(V \leq V_0\) is always satisfied.
- Thus, in this case, the desired range simply coincides with the range of all possible values of \(E\).
- **Second case:** \(V_0 = 0\).
- In this case, the constraint \(V \leq V_0\) means that the variance \(V\) should be equal to 0, i.e., \(x_1 = \ldots = x_n\).
- In this case, we know that this common value \(x_i\) belongs to each of \(n\) intervals \(x_i\).
- So, the set of all possible values \(E\) is the intersection:

\[E = x_1 \cap \ldots \cap x_n. \]
10. **Main Result:** A Feasible Algorithm that Computes \([E, \overline{E}]\) under Interval Uncertainty and Variance Constraint

- In the general case, first, we compute the values

\[
E^- \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \quad \text{and} \quad V^- \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E^-)^2;
\]
\[
E^+ \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} \overline{x}_i \quad \text{and} \quad V^+ \overset{\text{def}}{=} \frac{1}{n} \cdot \sum_{i=1}^{n} (\overline{x}_i - E^+)^2.
\]

- If \(V^- \leq V_0\), then we return \(E = E^-\).
- If \(V^+ \leq V_0\), then we return \(\overline{E} = E^+\).
- If \(V_0 < V^-\) or \(V_0 < V^+\), we sort the all \(2n\) endpoints \(\overline{x}_i \) and \(x_i \) into a non-decreasing sequence

\[
z_1 \leq z_2 \leq \ldots \leq z_{2n}
\]

and consider \(2n - 1\) zones \([z_k, z_{k+1}]\), \(k = 1, \ldots, 2n - 1\)
11. Algorithm (cont-d)

- For each zone \([z_k, z_{k+1}]\), we take:
 - for every \(i\) for which \(\bar{x}_i \leq z_k\), we take \(x_i = \bar{x}_i\);
 - for every \(i\) for which \(z_{k+1} \leq x_i\), we take \(x_i = \bar{x}_i\);
 - for every other \(i\), we take \(x_i = \alpha\); let us denote the number of such \(i\)'s by \(n_k\).

- The value \(\alpha\) is determined from the condition that for the selected vector \(x\), we have \(V(x) = V_0\):

\[
\frac{1}{n} \cdot \left(\sum_{i: \bar{x}_i \leq z_k} (\bar{x}_i)^2 + \sum_{i: z_{k+1} \leq x_i} (\bar{x}_i)^2 + n_k \cdot \alpha^2 \right) - \\
\frac{1}{n^2} \cdot \left(\sum_{i: \bar{x}_i \leq z_k} \bar{x}_i + \sum_{i: z_{k+1} \leq x_i} x_i + n_k \cdot \alpha \right)^2 = V_0.
\]
12. Algorithm: Last Part

• If none of the two roots of the above quadratic equation belongs to the zone, this zone is dismissed.

• If one or more roots belong to the zone, then for each of these roots α, we compute the value

$$E_k(\alpha) = \frac{1}{n} \cdot \left(\sum_{i:x_i \leq z_k} \bar{x}_i + \sum_{i:z_k+1 \leq x_i} x_i + n_k \cdot \alpha \right).$$

• After that:

 - if $V_0 < V^-$, we return the smallest of the values $E_k(\alpha)$ as E:

 $$E = \min_{k,\alpha} E_k(\alpha);$$

 - if $V_0 < V^+$, we return the largest of the values $E_k(\alpha)$ as E:

 $$\overline{E} = \max_{k,\alpha} E_k(\alpha).$$
13. Computation Time of the Algorithm

- Sorting $2n$ numbers requires time $O(n \cdot \log(n))$.
- Once the values are sorted, we can then go zone-by-zone, and perform the corresponding computations:
 - for each of $2n - 1$ zones,
 - we compute several sums of n numbers.
- The sum for the first zone requires linear time.
- Once we have the sums for one zone, computing the sums for the next zone requires changing a few terms.
- Each value x_i changes status once, so overall, to compute all these sums, we need linear time $O(n)$.
- So, the total time is:
 $$O(n \cdot \log(n)) + O(n) = O(n \cdot \log(n)).$$
14. Toy Example

- Case: $n = 2$, $x_1 = [-1, 0]$, $x_2 = [0, 1]$, $V_0 = 0.16$.

- In this case, according to the above algorithm, we compute the values

$$
E^- = \frac{1}{2} \cdot (-1 + 0) = -0.5; \quad E^+ = \frac{1}{2} \cdot (0 + 1) = 0.5;
$$

$$
V^- = \frac{1}{2} \cdot (((-1) - (-0.5))^2 + (0 - (-0.5))^2) = 0.25;
$$

$$
V^+ = \frac{1}{2} \cdot ((0 - 0.5)^2 + (1 - 0.5)^2) = 0.25.
$$

- Here, $V_0 < V^-$ and $V_0 < V^+$, so we consider zones.

- By sorting the 4 endpoints -1, 0, 0, and 1, we get

$$
z_1 = -1 \leq z_2 = 0 \leq z_3 = 0 \leq z_4 = 1.
$$

- Thus, here, we have three zones:

$$
[z_1, z_2] = [-1, 0], \quad [z_2, z_3] = [0, 0], \quad [z_3, z_4] = [0, 1].
$$
15. **Toy Example (cont-d)**

- *For the first zone* $[z_1, z_2] = [-1, 0]$, according to the above algorithm, we select $x_2 = 0$ and $x_1 = \alpha$, where
 \[
 \frac{1}{2} \cdot (0^2 + \alpha^2) - \frac{1}{4} \cdot (0 + \alpha)^2 = V_0 = 0.16.
 \]

- Here, $\alpha = -0.8$ and $\alpha = 0.8$, and only the first root belongs to the zone $[-1, 0]$.

- For this root, we compute the value
 \[
 E_1 = \frac{1}{2} \cdot (0 + \alpha) = \frac{1}{2} \cdot (0 + (-0.8)) = -0.4.
 \]

- *For the second zone* $[z_2, z_3] = [0, 0]$, according to the above algorithm, we select $x_1 = x_2 = 0$.

- In this case, there is no need to compute α, so we directly compute
 \[
 E_2 = \frac{1}{2} \cdot (0 + 0) = 0.
 \]
16. Toy Example (end)

- *For the third zone* \([z_3, z_4] = [0, 1]\), according to the above algorithm, we select \(x_1 = 0\) and \(x_2 = \alpha\), where
 \[
 \frac{1}{2} \cdot (0^2 + \alpha^2) - \frac{1}{4} \cdot (0 + \alpha)^2 = V_0 = 0.16.
 \]

- Of the two roots \(\alpha = -0.8\) and \(\alpha = 0.8\), only the second root belongs to the zone \([0, 1]\).

- For this root, we compute the value
 \[
 E_3 = \frac{1}{2} \cdot (0 + \alpha) = \frac{1}{2} \cdot (0 + 0.8) = 0.4.
 \]

- *As a result*, we get the values \(E_k\) for all three zones; so, we return
 \[
 \underline{E} = \min(E_1, E_2, E_3) = -0.4; \quad \overline{E} = \max(E_1, E_2, E_3) = 0.4.
 \]
17. Estimating Covariance Range in Privacy Case: Formulation of the Problem

• **Given:**
 - \(x \)-thresholds \(t_0^{(x)}, t_1^{(x)}, \ldots, t_{N_x}^{(x)} \);
 - \(y \)-thresholds \(t_0^{(y)}, t_1^{(y)}, \ldots, t_{N_y}^{(y)} \);
 - \(n \) pairs of intervals \((x_i, y_i) \) in which:
 - each of \(x_i \) is one of the \(x \)-ranges \([t_k^{(x)}, t_{k+1}^{(x)}]\), and
 - each of \(y_i \) is one of the \(y \)-ranges \([t_\ell^{(y)}, t_{\ell+1}^{(y)}]\).

• **Compute:** the range \([\underline{C}_{x,y}, \overline{C}_{x,y}]\) of possible values of

\[
C_{x,y} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E_x) \cdot (y_i - E_y) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - E_x \cdot E_y,
\]

where

\[
E_x = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i, \quad E_y = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i.
\]
18. Reducing Computing $\overline{C}_{x,y}$ to Computing $\underline{C}_{x,y}$

- We need to compute both the maximum $\overline{C}_{x,y}$ and the minimum $\underline{C}_{x,y}$.
- When we change the sign of y_i, the covariance changes sign as well: $C_{xy}(x_i, -y_i) = -C_{xy}(x_i, y_i)$.
- Thus, for the ranges, we get $C_{xy}(x_i, -y_i) = -C_{xy}(x_i, y_i)$.
- Since the function $z \rightarrow -z$ is decreasing:
 - its smallest value is attained when z is the largest;
 - its largest value is attained when z is the smallest.
- Thus, if z goes from \underline{z} to \overline{z}, the range of $-z$ is $[-\overline{z}, -\underline{z}]$.
- Therefore, $C_{xy}(x_i, -y_i) = -C_{xy}(x_i, y_i)$.
- Thus, if we know how to compute $C_{xy}(x_i, y_i)$, we can then compute $\overline{C}_{xy}(x_i, y_i)$ as $\overline{C}_{xy}(x_i, y_i) = -C_{xy}(x_i, -y_i)$.
- So, we will now only talk about computing $\underline{C}_{x,y}$.
19. Algorithm for Computing C_{xy}: Main Idea

- We have N_x possible x-ranges $[t_k^{(x)}, t_{k+1}^{(x)}]$.
- We also have N_y possible y-ranges $[t_{\ell}^{(y)}, t_{\ell+1}^{(y)}]$.
- So, totally, we have $N_x \cdot N_y$ cells $[t_k^{(x)}, t_{k+1}^{(x)}] \times [t_{\ell}^{(y)}, t_{\ell+1}^{(y)}]$.
- In this algorithm, we analyze these cells c one by one.
- For each c, we assume that the pair (E_x, E_y) corresponding to the minimizing set (x_i, y_i) is contained in c.
- We then find the values (x_i, y_i) where, under this assumption, the minimum of C_{xy} is attained.
- Based on these values x_i and y_i, we compute E_x, E_y.
- If $(E_x, E_y) \in c$, we compute the value C_{xy}.
- The smallest of the corresponding values C_{xy} is the desired minimum C_{xy}.
20. Possible Position of Intervals x_i and y_i in Relation to the Cell

- For each cell $[t^{(x)}_k, t^{(x)}_{k+1}] \times [t^{(y)}_\ell, t^{(y)}_{\ell+1}]$ and for each i, there are three possible positions for x_i:

 X^0: x_i coincides with the cell’s x-range;
 X^-: x_i is to the left of the x-range;
 X^+: x_i is to the right of the x-range.

- Similarly, there are three possible positions for y_i:

 Y^0: y_i coincides with the cell’s y-range;
 Y^-: y_i is below the y-range;
 Y^+: y_i is above the y-range.

- So, we have $3 \cdot 3 = 9$ pairs of options.
21. Selecting x_i and y_i at Which C_{xy} Attains its Minimum

For each cell c and for each i, the minimum of C_{xy} under the assumption $(E_x, E_y) \in c$ is attained:

- in case (X^+, Y^+): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^+, Y^0): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^+, Y^-): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^-, Y^+): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^-, Y^0): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^-, Y^-): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^0, Y^+): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^0, Y^-): for $x_i = \underline{x}_i$ and $y_i = \underline{y}_i$;
- in case (X^0, Y^0): for $(x_i, y_i) = (\underline{x}_i, \underline{y}_i)$ or for $(x_i, y_i) = (\underline{x}_i, \underline{y}_i)$.
22. Implementation Details

- For those i for which $x_i \times y_i \neq c$, we directly compute the minimizing values x_i and y_i.

- For each i for which $x_i \times y_i = c$, we have two different options: $(x_i, y_i) = (x_i, \overline{y}_i)$ and $(x_i, y_i) = (\overline{x}_i, y_i)$.

- A naive implementation would require testing all 2^M combinations, where M is the number of such cells.

- Luckily, the value C_{xy} does not change if we swap pairs (x_i, y_i).

- So, the value C_{xy} only depends on the number of i’s to which we assign $(x_i, y_i) = (x_i, \overline{y}_i)$.

- Thus, we can make computations efficient if, for each integer $m = 0, 1, 2, \ldots, M$, we assign:
 - to m i’s, the values $x_i = x_i$ and $y_i = \overline{y}_i$, and
 - to the rest, the values $x_i = \overline{x}_i$ and $y_i = y_i$.
23. Resulting Computation Time of Our Algorithm

- For each cell, we perform $M+1 \leq n$ computations C_{xy}, one for each option m.

- In general, computing $E_x = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i$, $E_y = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i$, and $C_{x,y} = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E_x) \cdot (y_i - E_y)$ takes time $O(n)$.

- However, each new computation differs from the previous one
 - by a single change in $\sum x_i \cdot y_i$ and
 - a single change in estimating $E_x \sim \sum x_i$ and $E_y \sim \sum y_i$.

- Thus, each new computation requires $O(1)$, and so, for each cell, the total computation time is $O(n)$.

- So, for all $N_x \cdot N_y$ cells, we need time $O(N_x \cdot N_y \cdot n)$.
24. Computation Time: Discussion

- **Reminder:** this algorithm takes time $O(N_x \cdot N_y \cdot n)$.
- Usually, the number N_x of x-ranges and the number N_y of y-ranges are fixed.
- In this case, what we have is a *linear-time* algorithm.
- Clearly, it is not possible to compute covariance faster than in linear time:
 - we need to take into account all n pairs (x_i, y_i), and
 - processing each data point requires at least one computation.
- So, our algorithm is *(asymptotically) optimal* – it requires the smallest possible order of computation time $O(n)$.
- **Comment:** for general (non-privacy) intervals, the problem is NP-hard.
25. Computing $\overline{C}_{xy}:$ A Reminder

- We use the fact that $\overline{C}_{xy} = -\overline{C}_{xz}$ where $z = -y$.

- We form N_y threshold values for z:

$$t_0(z) = -t(y), t_1(z) = -t(y), \ldots, t_N(z) = -t(y).$$

- We then form N_y z-ranges:

$$[t_0(z), t_1(z)], [t_1(z), t_2(z)], \ldots, [t_N(z), t_N(z)].$$

- Based on the intervals $y_i = [\underline{y}_i, \overline{y}_i]$, we form intervals $z_i = -y_i = [-\overline{y}_i, -\underline{y}_i]$.

- We apply the above algorithm for computing the lower bound to compute the value \overline{C}_{xz}.

- Finally, we compute \overline{C}_{xy} as $\overline{C}_{xy} = -\overline{C}_{xz}$.
26. Estimating Correlation: Main Result

- There exists a polynomial-time algorithm that:
 - given \(n \) pairs of intervals \([x_i, \bar{x}_i]\) and \([y_i, \bar{y}_i]\),
 - computes (at least) one of the endpoint of the interval \([\underline{\rho}, \bar{\rho}]\) of possible values of the correlation \(\rho\).

- Specifically, in the case of a non-degenerate interval \([\underline{\rho}, \bar{\rho}]\):
 - when \(\bar{\rho} \leq 0 \), we compute the lower endpoint \(\underline{\rho}\);
 - when \(0 \leq \underline{\rho} \), we compute the upper endpoint \(\bar{\rho}\);
 - in all remaining cases, we compute both endpoints \(\underline{\rho}\) and \(\bar{\rho}\).
27. Reducing Minimum to Maximum

- When we change the sign of y_i, the correlation changes sign as well:
 \[\rho(x_1, \ldots, x_n, -y_1, \ldots, -y_n) = -\rho(x_1, \ldots, x_n, y_1, \ldots, y_n). \]

- If z goes from \bar{z} to \bar{z}, the range of $-z$ is $[-\bar{z}, -\bar{z}]$.

- So, for the endpoints of the ranges, we get
 \[
 \bar{\rho}([x_1, \bar{x_1}], \ldots, [x_n, \bar{x_n}], -[y_1, \bar{y_1}], \ldots, -[y_n, \bar{y_n}]) =
 -\rho([x_1, \bar{x_1}], \ldots, [x_n, \bar{x_n}], [y_1, \bar{y_1}], \ldots, [y_n, \bar{y_n}]),
 \]
 where $- [y_i, \bar{y_i}] = \{-y_i : y_i \in [y_i, \bar{y_i}]\} = [-\bar{y_i}, -y_i]$.

- If we know how to compute $\bar{\rho}$, we can compute ρ as
 \[
 \rho([x_1, \bar{x_1}], \ldots, [x_n, \bar{x_n}], [y_1, \bar{y_1}], \ldots, [y_n, \bar{y_n}]) =
 -\rho([x_1, \bar{x_1}], \ldots, [x_n, \bar{x_n}], [-\bar{y_1}, -y_1], \ldots, [-\bar{y_n}, -y_n]).
 \]

- Thus, we can concentrate on computing $\bar{\rho}$.
28. Algorithm

- For each i from 1 to n, the box $[x_i, \bar{x}_i] \times [y_i, \bar{y}_i]$ has four vertices: $(x_i, y_i), (x_i, \bar{y}_i), (\bar{x}_i, y_i),$ and (\bar{x}_i, \bar{y}_i).

- Let’s consider 4-tuples consisting of two vertices and two signs $(-, -), (-, 0), \ldots, (+, +)$.

- For the first vertex, we:
 - slightly increase x if the first sign is $+$ and
 - slightly decrease x if the first sign is $-$.

- We similarly move the second vertex depending on the second sign.

- We form a straight line through the resulting points.

- We select two 4-tuples, and form two lines: representative x-line and representative y-line.
29. Algorithm (cont-d)

- We have an actual x-line $y = E_y + k_x \cdot (x - E_x)$ and an actual y-line $x = E_x + k_y \cdot (y - E_y)$.
- Here, E_x, E_y, k_x, k_y are to-be-determined.
- For each box, based on its location in comparison to the representative lines, we select the values x_i and y_i:
 - If the box is above the repr. x-line, take $x_i = \bar{x}_i$; then, select y_i s.t. (\bar{x}_i, y_i) is the closest to the actual y-line.
 - If the box is below the x-line, we take $x_i = \underline{x}_i$.
 - If the box is to the right of the y-line, take $y_i = \underline{y}_i$; select x_i s.t. (x_i, \underline{y}_i) is the closest to the actual x-line.
 - If the box is to the left of the repr. y-line, take $y_i = \bar{y}_i$.
 - When the box contains the intersection point (E_x, E_y) of x- and y-lines, take $x_i = E_x$ and $y_i = E_y$.
30. Algorithm (cont-d)

• For each i, we get explicit expressions for x_i and y_i in terms of the four unknowns E_x, E_y, k_x and k_y.

• By substituting these expressions into the following formulas, we get a system of 4 equations with 4 unknowns:

$$E_x = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i; \quad E_y = \frac{1}{n} \cdot \sum_{i=1}^{n} y_i;$$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - E_x \cdot E_y = k_x \cdot \left(\frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - E_x)^2 \right);$$

$$\frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - E_x \cdot E_y = k_y \cdot \left(\frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - E_y)^2 \right).$$

• For each of the solutions E_x, E_y, k_x and k_y, we compute x_i and y_i ($i = 1, \ldots, n$), and then the correlation ρ.

• The largest of these values ρ is returned as $\bar{\rho}$.
31. Computation Time

- We have $4n$ possible vertices, so we have $O(n^2)$ possible pairs of vertices – and thus, $O(n^2)$ possible 4-tuples.
- Thus, we have $O(n^2)$ possible representative x-lines, and we also have $O(n^2)$ representative y-lines.
- In our algorithms, we consider pairs consisting of a representative x-line and a representative y-line.
- We have $O(n^2) \cdot O(n^2) = O(n^4)$ possible pairs of lines.
- For each pair of lines, we need:
 - $O(n)$ steps to select x_i and y_i for each of n boxes;
 - $O(n)$ steps to compute ρ;
 - to the total of $O(n) + O(n) = O(n)$.
- Thus, the total computation time is $O(n^4) \times O(n) = O(n^5)$, which is polynomial (feasible).
32. Proof of the First Result: Main Lemmas

• For \(x_i' = -x_i \), we have \(E' = -E \) and \(V' = V \).

• Thus \(E = -E' \); so, it is sufficient to consider \(E \).

• Let \(x \) be an optimizing vector, i.e., \(E(x) = E \).

• Lemma 1: if \(x_i < E \), then \(x_i = \bar{x}_i \).

• Proof: else, by adding \(\Delta x_i > 0 \) to \(x_i \), we could increase \(E \) without increasing \(V \).

• Lemma 2: if \(\underline{x}_i < x_i < \bar{x}_i \), then:
 - for every \(j \) for which \(E \leq x_j < x_i \), we have \(x_j = \bar{x}_j \);
 - for every \(k \) for which \(x_k > x_i \), we have \(x_k = \bar{x}_k \).

• Proof: similar.

• Lemma 3: if for all \(x_i \geq E \), we have either \(x_i = \underline{x}_i \) or \(x_i = \bar{x}_i \), then \(x_i = \bar{x}_i \) and \(x_j = \underline{x}_j \) imply \(x_i \leq x_j \).
33. Proof of the First Result (cont-d)

• **Lemma 1:** if \(x_i < E \), then \(x_i = \overline{x}_i \).

• **Lemma 2:** if \(x_i < x_i < \overline{x}_i \), then:
 - for every \(j \) for which \(E \leq x_j < x_i \), we have \(x_j = \overline{x}_j \);
 - for every \(k \) for which \(x_k > x_i \), we have \(x_k = \underline{x}_k \).

• **Lemma 3:** if for all \(x_i \geq E \), we have either \(x_i = x_i \) or \(x_i = \overline{x}_i \), then \(x_i = \overline{x}_i \) and \(x_j = \underline{x}_j \) imply \(x_i \leq x_j \).

• Thus, there exists a threshold value \(\alpha \) such that
 - for all \(j \) for which \(x_j < \alpha \), we have \(x_j = \overline{x}_j \);
 - for all \(k \) for which \(x_k > \alpha \), we have \(x_k = \underline{x}_k \).

• Once we know to which zone \(\alpha \) belongs, we can uniquely determine all \(x_j \) of the corresponding vector \(x \).

• Then \(\overline{E} \) is the largest of the values \(E(x) \) corresponding to different zones.
34. Toward Justification of our Second Algorithm: Known Facts from Calculus

- A function $f(x)$ defined on an interval $[x, \bar{x}]$ attains its minimum:
 - either an internal point $x \in (x, \bar{x})$,
 - or at one of its endpoints $x = x$ or $x = \bar{x}$.
- If the minimum of $f(x)$ is attained at an internal point, then
 \[\frac{df}{dx} = 0. \]
- If the minimum is attained for $x = x$, then
 \[\frac{df}{dx} \geq 0. \]
- If the minimum is attained for $x = \bar{x}$, then
 \[\frac{df}{dx} \leq 0. \]
35. Let Us Apply These Facts to Our Problem

- In general, for the point \((x_1, \ldots, x_n)\) at which a function \(f(x_1, \ldots, x_n)\) attains its minimum, we have:
 - if \(x_i = \bar{x}_i\), then \(\frac{\partial f}{\partial x_i} \geq 0\);
 - if \(x_i = \bar{x}_i\), then \(\frac{\partial f}{\partial x_i} \leq 0\);
 - if \(\bar{x}_i < x_i < \bar{x}_i\), then \(\frac{\partial f}{\partial x_i} = 0\).

- For covariance \(C_{xy}\), we have \(\frac{\partial C_{xy}}{\partial x_i} = \frac{1}{n} \cdot (y_i - E_y)\).

- Thus, for the point \((x_1, \ldots, x_n, y_1, \ldots, y_n)\) at which \(C_{xy}\) attains its minimum, we have:
 - if \(x_i = \bar{x}_i\), then \(y_i \geq E_y\).
 - if \(x_i = \bar{x}_i\), then \(y_i \leq E_y\).
 - if \(\bar{x}_i < x_i < \bar{x}_i\), then \(y_i = E_y\).
36. Case of $\bar{y}_i < E_y$

- **Case**: $\bar{y}_i < E_y$.

- **Reminder**:
 - if $x_i = \underline{x}_i$, then $y_i \geq E_y$.
 - if $x_i = \overline{x}_i$, then $y_i \leq E_y$.
 - if $\underline{x}_i < x_i < \overline{x}_i$, then $y_i = E_y$.

- Since $\bar{y}_i < E_y$ and $y_i \leq \bar{y}_i$, we have $y_i < E_y$.

- Thus, in this case:
 - we cannot have $x_i = \underline{x}_i$, because then we would have $y_i \geq E_y$.
 - we cannot have $\underline{x}_i < x_i < \overline{x}_i$, because then we would have $y_i = E_y$.

- So, if $\bar{y}_i < E_y$, the only remaining option is $x_i = \overline{x}_i$.
37. Case of $E_y < y_i$

- **Case:** $E_y < y_i$.

- **Reminder:**
 - if $x_i = \bar{x_i}$, then $y_i \geq E_y$.
 - if $x_i = \bar{x_i}$, then $y_i \leq E_y$.
 - if $\bar{x_i} < x_i < \bar{x_i}$, then $y_i = E_y$.

- Since $E_y < y_i$ and $y_i \leq y_i$, we have $E_y < y_i$.

- Thus, in this case:
 - we cannot have $x_i = \bar{x_i}$, because then we would have $y_i \leq E_y$
 - we cannot have $\bar{x_i} < x_i < \bar{x_i}$, because then we would have $y_i = E_y$.

- So, if $E_y < y_i$, the only remaining option is $x_i = \bar{x_i}$.
38. Cases of $\bar{x}_i < E_x$ and $E_x < \bar{x}_i$

- We have shown that:
 - if $\bar{y}_i < E_y$, then $x_i = \bar{x}_i$;
 - if $E_y < y_i$, then $x_i = x_i$.

- We can similarly conclude that:
 - if $\bar{x}_i < E_x$, then $y_i = \bar{y}_i$;
 - if $E_x < x_i$, then $y_i = y_i$.

- So, we can tell exactly where the min is attained if:
 - the interval x_i is either completely to the left or to the right of E_x, and
 - the interval y_i is either completely to the left or to the right of E_y,

- E.g., if $\bar{x}_i < E_x$ (x_i to the left of E_x) and $E_y < y_i$ (y_i to the right), then min is attained for $x_i = \bar{x}_i$ and $y_i = \bar{y}_i$.
39. Case When One of the Intervals Contains E_x or E_y Inside

- What if one of the intervals, e.g., x_i, is fully to the left or fully to the right of E_x, but y_i contains E_y inside?
- For example, if $\bar{x}_i < E_x$, this means that $y_i = \bar{y}_i$.
- Since E_y in inside the interval $[\underline{y}_i, \overline{y}_i]$, this means that $\underline{y}_i \leq E_y \leq \overline{y}_i$ and thus, $E_y \leq y_i$.
- If $E_y < y_i$, then, as we have shown earlier, we get $x_i = \bar{x}_i$.
- One can show that the same conclusion holds when $y_i = E_y$.
- So, in this case, we also have a single pair (x_i, y_i) where the minimum can be attained: $x_i = \underline{x}_i$ and $y_i = \overline{y}_i$.
40. Case When \((E_x, E_y) \in c\)

- Where is the point \((x_i, y_i)\) at which the minimum is attained?

- Calculus shows that \((x_i, y_i)\) is in the union \(U_1\) of the following three linear segments:
 - a segment where \(x_i = \underline{x}_i\) and \(y_i \geq E_y\);
 - a segment where \(x_i = \overline{x}_i\) and \(y_i \leq E_y\); and
 - a segment where \(\underline{x}_i < x_i < \overline{x}_i\) and \(y_i = E_y\).

- Similarly, \((x_i, y_i)\) is in the union \(U_2\) of the following three linear segments:
 - a segment where \(y_i = \underline{y}_i\) and \(x_i \geq E_x\);
 - a segment where \(y_i = \overline{y}_i\) and \(x_i \leq E_x\); and
 - a segment where \(\underline{y}_i < y_i < \overline{y}_i\) and \(x_i = E_x\).

- So, \((x_i, y_i) \in U_1 \cap U_2 = \{(x_i, y_i), (\underline{x}_i, \underline{y}_i), (E_x, E_y)\}\).
41. Case when \((E_x, E_y) \in c\) (cont-d)

- We showed that in this case, the minimum of \(C_{xy}\) is attained at \((x_i, y_i)\), \((\bar{x}_i, \bar{y}_i)\), or at \((E_x, E_y)\).
- Let us show that it cannot be attained at \((E_x, E_y)\).
- Indeed, let us then take a small \(\Delta\) and replace \(x_i = E_x\) with \(x_i + \Delta\) and \(y_i = E_y\) with \(y_i - \Delta\). Then:
 \[
 E'_x = E_x + \frac{\Delta}{n}, \quad E'_y = E_y - \frac{\Delta}{n}, \quad C'_{xy} = C_{xy} - \frac{\Delta^2}{n} \cdot \left(1 - \frac{1}{n}\right).
 \]
- These equalities are easy to prove if we shift all the values of \(x_j\) by \(-E_x\) and all the values of \(y_j\) by \(-E_y\).
- Indeed, such a shift does not change \(C_{xy}\).
- The new value \(C'_{xy}\) is smaller than \(C_{xy}\), while we assumed that \(C_{xy}\) is minimal: a contradiction.
- Thus, in the case when \((E_x, E_y) \in c\), the minimum can be only attained at \((\bar{x}_i, \bar{y}_i)\) or \((\bar{x}_i, \bar{y}_i)\).
42. Proof of Correctness: Final Step

- We know that for minimizing vector \((x_1, \ldots, x_n, y_1, \ldots, y_n)\), the pair \((E_x, E_y)\) must be contained in one of the \(N_x \cdot N_y\) cells.

- We have already shown that for each cell:
 - if the pair \((E_x, E_y)\) is contained in this cell,
 - then the corresponding minimizing values \(x_i\) and \(y_i\) will be as above.

- Thus, the actual minimizing value will be obtained when we analyze the corresponding cell.

- So, the desired value \(C_{xy}\) will be among the values computed by the above algorithm.

- Thus, the smallest of the computed values will be exactly \(C_{xy}\).
43. Towards Proving the Third Result: Reminder

- A function $f(x)$ defined on an interval $[x, \bar{x}]$ attains its minimum:

 - either an internal point $x \in (x, \bar{x})$,

 - or at one of its endpoints $x = x$ or $x = \bar{x}$.

- If the minimum of $f(x)$ is attained at an internal point, then

 $$\frac{df}{dx} = 0.$$

- If the minimum is attained for $x = x$, then

 $$\frac{df}{dx} \geq 0.$$

- If the minimum is attained for $x = \bar{x}$, then

 $$\frac{df}{dx} \leq 0.$$
44. Proof of the Third Result

\[
\frac{\partial \rho}{\partial x_i} = \frac{1}{\sigma_x \cdot \sigma_y \cdot n} \cdot [(y_i - E_y) - k_x \cdot (x_i - E_x)], \quad \text{w/} \quad k_x = \frac{C}{V_x}.
\]

- Thus, the sign of the derivative coincides with the sign of the expression \((y_i - E_y) - k_x \cdot (x_i - E_x)\).

- So, the sign depends on whether we are above or below the actual \(x\)-line \(y_i = E_y + k_x \cdot (x_i - E_x)\).

- The sign of \(\frac{\partial \rho}{\partial y_i}\) depends on where we are w.r.t. the actual \(y\)-line \(x_i = E_x + k_y \cdot (y_i - E_y)\), with \(k_y = \frac{C}{V_y}\).

- Now, the selection of \(x_i\) and \(y_i\) follows from calculus.

- All possible locations of lines w.r.t. vertices are covered:
 - each line can be moved and rotated
 - until it almost touches two points — i.e., becomes one of our representative lines.
45. Acknowledgments

I want to sincerely thank everyone who helped me:

- members of my committees, Drs. Vladik Kreinovich, Luc Longpré, and Peter Moscoupoulos;

- all other faculty and staff from UTEP Computer Science Department, especially Dr. Eric Freudenthal;

- all my friends here and in Iran;

- last but not the least, my amazing family for their non-stop love and support all through my life.

There are no words to fully express all my feelings, I can only say THANK YOU to everyone!